�����

					CONVERTING PC-CDL FROM PASCAL TO C

							BY: LAVERNE S. WILLIAMS

				SUPERVISORS: JON STREETS AND WAYNE KOSKA

FERMI NATIONAL ACCELERATOR LABORATORY

SUMMER INTERNSHIP IN SCIENCE AND TECHNOLOGY

MAY 20, 1996 - AUGUST 2, 1996

ONLINE SYSTEMS DEPARTMENT,

FERMILAB COMPUTING DIVISION

ABSTRACT

The Personal Computer CAMAC Diagnostic Language (PCCDL) is an interpreter language that provides a user friendly environment for the development of CAMAC programs. This document describes the general layout of the Pascal PCCDL program and provides an outline of the process of its conversion to C.

�

INTRODUCTION

The Personal Computer CAMAC Diagnostic Language (PCCDL) is an interpreter language written to provide a user friendly environment for the development of Computer Automated Measurement and Control (CAMAC) programs. The compiling capability, execution, full screen editing, help, and immediate mode provide an Integrated Development Environment (IDE), in other words, an editor for the programmer. PCCDL was created for the DSP CAMAC crate controller modules. The statement identifiers used in PCCDL are a combination of BASIC and CDL statements. PCCDL was written using Borland's TURBO Pascal and Editor Toolbox (Kent 1). Since there no longer exists much expertise in this language in the Online Systems (OLS) Department of FermiLab, it is important to translate the code from Pascal to C programming language. When completed, the IEEE standard CAMAC function calls will be incorporated to generalize the code to run on a variety of platforms.

The immediate goals of this project were 1) to reconstruct the PCCDL program using the C programming language, and 2) to read a simple CDL program on a UNIX platform and execute the commands. The extraction of the CDL parser and PCD (pseudo code) interpreter from the IDE, believed to be language and platform dependent, was necessary to achieve this goal. In this paper, the significance of PCCDL programming at Fermi National Accelerator Laboratory will be explored. Also, the process behind the conversion of the TURBO Pascal program to the C programming language will be discussed. This document will serve as a guide through the intense involvement required to perform such a tedious task as mentioned above.

DISCUSSION

I. Background

	CAMAC is a modular data handling system that is used at almost every high-energy physics research laboratory throughout the world. Its function is to provide a scheme to allow a wide range of modular instruments to be interfaced to a standardized control called a DATAWAY. The DATAWAY is then interfaced to a computer. CAMAC allows information to be transferred into and out of the instrument modules (LeCroy 74-75).

	The CAMAC instrument modules used at FermiLab are diverse in types and functions. Some examples of the test modules used in the high-energy physics experiments are ADCs, TDCs, and scalers. Analog-to-Digital Converters (ADCs) measure either the charge or the voltage and produce a digital number relevant to the input. They possess a high sensitivity and perform fast conversions (LeCroy 95). Digital Counter Time-to-Digital Converters (TDCs) are responsible for a wide variety of time applications; they are fast as well (LeCroy 105). Scalers are data acquisition units that record logic pulses received during a given period of time. They have a high capacity and density (LeCroy 134). Each one of these test modules and many more are essential to the various types of experiments taking place at Fermi National Accelerator Laboratory. Therefore, they must be working properly in order to produce accurate readings from the experiments.

Simon William Kent designed PCCDL in order to aid in testing the efficiency of the CAMAC test modules. PCCDL is executable on PC compatible machines with DOS software. The language was written in Pascal. Pascal is a programming language named after the seventeenth century mathematician Blaise Pascal. It provided a teaching language that highlights concepts common to all computer languages. Now, Pascal is almost an obsolete language; therefore, it is very necessary to translate it into C (which is the universal language in today's society) or any other well-known programming language.

II. Considerations

	The PCCDL program, used in this project, contained thousands of lines of code. Figure 1 shows how the code was functionally separated into three parts.

� EMBED OrgPlusWOPX.4 ���

The proposed procedure in doing this project was to:

Become familiar with Pascal and PCCDL.

Speak to OLS department members about PCCDL.

Take into consideration the following questions:

		a) How PCCDL is used.

b) How extensively the IDE (windowing and editing utilities) is use during PCCDL code development.

c) What is the history of PCD? Was it developed because parsing CDL code was too slow, so that with today's faster processors it can be eliminated?

4) Sketch out the flow of the PCCDL that is the driver for the parser and PCCDLC that is the driver for the PCD interpreter routines. Determine if they can be easily extracted from the IDE.

5) Decide which to translate first, the parser or the interpreter, or whether they should be done together.

6) Begin the translation process of the code after the completion of the first five steps.

III. Experimental Means

	Several manuals and other materials had to be studied in order to prepare and perform for the required task Some titles are listed below.

	PCCDL User and Reference Manual written by Simon W. Kent

	Introducing C to Pascal Programmers written by Namir Shammas

	Teach Yourself C in 21 Days written by Peter Aitken & Bradley Jones

	Mastering Standard C written by Rex Jaeschke

	Turbo Pascal Reference Guide provided by Borland International

	Turbo Pascal Programmer’s Guide provided by Borland International

	Turbo Pascal User’s Guide provided by Borland International

	Turbo C Reference Guide provided by Borland International

	dbx User’s Reference Manual written by Wendy Ferguson, Beth Fryer and Robert

 Reimann

Also, the world wide web provided excellent web sites as reference during the translation and debugging processes. Some titles are listed below.

	“Programming in C” http://arachnid.cs.cf.ac.uk/Dave/C/CE.html

	“Series Overview” http://www.iftech.com/classes/c/c0.htm

	“Brian W. Kernighan: Programming in C: A Tutorial

http://www.lysator.liu.se:7500/c/bwk-tutor.html

“C Programming Reference” http://www.cs.uwa.edu.au/C_ref/C/cref.html

IV. Procedure

The concepts of PCCDL and the basics of Pascal were explored. The PCCDL and Pascal manuals were studied and/or reviewed. The main points behind PCCDL are:

it was designed to replace CDL (CAMAC Diagnostic Language) because CDL was written for the PDP-11 using another operating system (Kent 1),

it is used for the DSP CAMAC crate controller modules, and

3) the compiling capability, execution, full screen editing, help, and immediate mode provide an editor for the programmer.

The PCCDL program itself was studied in order to understand the processes being performed. A demonstration of the PCCDL program’s operation was performed by an OLS department member at the Feynmann Computing Center which houses the central computing facilities for FermiLab. Then the investigation began. It was decided that the editor could be removed because the functions were not completely embedded. The editing procedures provided by Borland International can be found in BINED.PAS, F_SELECT.PAS, LINEDIT.PAS, PCCDL.PAS, WIN.PAS, and WINDOWS.PAS in the appendix. Figure 2 shows how the conversion process was broken down into four tasks.

Figure 2.

� EMBED OrgPlusWOPX.4 ���

It was determined that a great deal of the original code would have to be reproduced because of the extraction of the IDE and the difference between Pascal and C programming languages.

	The entire PCCDL program consisted of sixteen files. Figure 3 displays the names of the original files. Their names correspond with their function.

Figure 3.

�

	

As the files were translated, the original file names or something close to them were kept, and the .pas extension was replaced by the .c extension. The VARCDL.PAS file was translated into two separate header files called parse_defs.h and parse_globals.h because the variables had to be separated into global variables and definitions. Another header file called hash.h had to be created in order to initialize the hash table required for the program; the original hash table initialization was performed at the beginning of the PARSECDL.PAS file. The driver and buffer had to be totally reproduced because the original was embedded in the removed IDE. The buffer functions 1) open the disk file and check for errors, and 2) read and concatenate a string from a line buffer and store it a new buffer. Also memory is allocated as these functions process. They are contained in the trial1.c and parse1.c files found in the appendix. The program had to be tested; therefore, many sample files were produced and tested. One of the test files is shown in Figure 4 in order to demonstrate the program’s function.

Figure 4.

 firstone.txt

Hello!

Welcome to Julia and Laverne's World!

We are very happy that you decided to join us on this beautiful day. We are

hoping to get this file into the buffer soon.

Bye Bye!

The file was tested, and the produced output is contained in Figure 5.

Figure 5.

<fndaub> cc -g trial1.c

<fndaub> a.out

Enter the name of the file to be opened or q to quit:

firstone.txt

file=firstone.txt

newbuf=50, linebuf=7

newbuf=43, linebuf=38

newbuf=5, linebuf=1

newbuf=4, linebuf=77

reallocating memory

newbuf=77, linebuf=46

newbuf=31, linebuf=1

newbuf=30, linebuf=8

The length of the string is 178.

Hello!

Welcome to Julia and Laverne's World!

We are very happy that you decided to join us on this beautiful day. We are

hoping to get this file into the buffer soon.

Bye Bye!

	After successful completing the buffer files, the PARSECDL.PAS file (the parser) had to be translated. This process involved a lot of reproducing because many procedures performed in Pascal cannot be directly translated into C. For example, Pascal manipulates strings differently from C. There were functions that were defined of an array type; functions cannot return array type values in C. With the help of manuals and help pages from the world wide web, the parser was successfully translated and compiled. It was originally over twelve hundred lines in length; after the translation, it became over seventeen hundred lines in length.

	The parser begins with a hash table which contains the tokens to be recognized from the code. It takes a piece of code from the buffer and sends it through various functions. First, the code is made upper case, and the skipped spaces are taken out. Then, it is sent to a function that determines what type of token it is based on the first character. The types recognized in the CDL code are hexadecimal numbers ($FE), octal numbers (#376), binary numbers (!11111110), decimal numbers (10), strings (“SUE”), identifiers (‘_’), and special characters (*). For example, if the first character is a “$”, the code is sent to the function that deals with hexadecimal numbers. When the code is manipulated, a pseudo code (called p_code in the program) is assigned in order to help setup the PCD file. The PCD file, in the end, will consist of only numbers that will then be linked with the CAMAC routines and sent to the test modules.

	Other files had to be translated while the PARSECDL.PAS file was being translated because functions from them were being used. These files were ERRCDL.PAS which contains the error messages, LLISTCDL.PAS, which allocates and frees memory for the structures, and INITCDL.PAS, which checks the memory and initializes pointers and arrays. Also, another file named ptrintcdl.c was created in order to initialize the pointers to the structures. After the completion of these files, they had to be linked and tested. When the linked files were working properly, two more files were translated. They were PCDIOCDL.PAS, which actually produces the PCD file, and EVALCDL.PAS, which reads the produced PCD file. These files were linked with the existing files. At the time of this writing, the new linked program was working but the results were not sufficient.

IV. Results

	Due to the fact that the Summer Internship in Science and Technology Program ended on August 1, 1996, I did not complete the proposed project. Three-fourths of the original program was translated and compiled during my ten-and-a-half-week appointment at FermiLab. Also, there were files that were translated but never compiled. These files are another.c, camtunit.c, and pccdlc.c which are found in the appendix. Approximately, seventy percent of the translated code was in functional condition at the time of this writing.

	No major problems occurred with this project. One minor problem was that setting up www in the same terminal with the program interfered with the program’s execution. The reason for this problem was never determined; therefore, two terminals had to be set up in order to use the web and execute the program.

	An actual CDL file (test.cdl) was used to test the linked program; test.cdl is found in the appendix. Figure 6 provides a portion of the CDL file.

Figure 6.

‘***

DEFINE clr_dsj

	LOCATE 1,8

	PRINT “CLEAR DSJ !”

	FNA 9, S, 0, 0

	DELAY 1000

	END

DEFINE trig_dsj term

‘VARIABLES : B% - BITS DSJ SET TO BY OPERATOR

‘	Z% - CHECK LOGIC

‘	L% - LAM LOGIC

‘	C% - COUNTER

begin: L% = 0

	C% = 0

	B% = term

	LOCATE 1, 10

	PRINT “SET DSJ TO BIT SETTING”, B%\2,”, PRESS 1 WHEN READY!”

	INPUT “>”, Z%

	IF Z% = 1 THEN Z% = 0

	clr_dsj

	FNA 25, S, 0, 0

loopdsj:

	L% = LAM

	LOCATE 1, 8

	PRINT “STAT DSK, LAM =”, L%\2,”, INT COUNTER = “,C%\5

	DELAY 1

	IF L% = 8 THEN GOTO endloopdsj

	IF C% = 2000 THEN GOTO endloopdsj

	C% = C% + 1

	GOTO loopdsj

endloopdsj:

END

‘***

An entire PCD file was suppose to be the output from the program. Because of the program’s insufficiency, only one half of a PCD file was produced. Figure 7 displays the produced PCD file (test.pcd) which is found in the appendix.

Figure 7.

20 0

22 3

22 4

22 7

22 8

22 9

255 0

255 0

 0 0 10 0 3 0 1 0 11 0 3 0 1 0 0 0 2 0 2 0 12 30 1 0 0 0 20 1 0 0 103 0 0 0 6 1 6 1 12 30 1 0 0 0 40 2 4 41 0 0 40 2 4 42 0 0 40 2 4 43 0 0 80 0 1 0 0 0 81 0 0 0 23 9 0 0 23 3 0 0 23 7 0 0 23 8 0 0 81 0 0 0 23 4 0 0 80 0 1 0 0 0 81 0 0 0 23 7 0 0 23 8 0 0 81 0 0 0 23 4 0 0

CONCLUSION

	Due to the time span, the immediate goals of this project were not completely finished. The removal of the IDE was successfully completed. Julia Ng, another summer student and my partner, will remain at FermiLab for a few more weeks in order to continue the work on the project. She will work on the production of the correct PCD file. Another summer student will construct a new editing tool with Ms. Ng. Then an OLS department member will continue to perform work on the new PCCDL program. I plan to stay in contact, by email, with Jon Streets and Wayne Koska in order to keep up with the progress of the project.

PERSONAL NOTE

	Computer programming is one of my two perspective career fields. Being that I am a computer science major, I am truly glad that I was able to perform this project at this point in my academic career. I was able to experience the true highlights and downfalls of computer programming; this experience consisted mostly of the trial-and-error approach. I learned new concepts and techniques, and I was able to decide if computer programming is right for me.

ACKNOWLEDGEMENTS

	I would like to personally thank Julia Ng for assisting me with this project. To my supervisors, Jon Streets and Wayne Koska of the Online Systems Department, thank you for the endless hours of assistance and headaches. I am sorry that you had to suffer through the “Pascal: How Can It Do That," “Pointer Distress” and “The PC Does Not Like Me” eras with Julia and me. I would also like to thank the members of the Equal Opportunity Office and the selection committee for allowing me to participate in this internship.

REFERENCES

PN-445. Kent, Simon W. PCCDL User and Reference Manual. Batavia: Fermilab

 Computing Division. May 15, 1991. pp. 1 - 2.

LeCroy, Walter O., Chairman. LeCroy Corporation Research Systems Division: 1994

	Research Instrumentation Catalog. New York: LeCroy Corporation. 1994.

73 - 135.

�

(footnote continued)

��

�PAGE �10�

�PAGE �11�

� EMBED Word.Picture.6 ���

.�.�.�.�.�.�.�.�.

