

Creating a Front End to the Tevatron Magnet Database

by Chanda Harris

University of South Florida, Comp. Eng.

Supervisors

Dr. Francois Ostiguy and Dr. Norman Gelfand

Accelerator Physics Department

�
Table of Contents

 Introduction.....................................p.1

 Components of Project..................p.1-9

 Results...p.10-12

 Conclusions......................................p.13

 Acknowledgments..........................p.13

 References.......................................p.13-14

 Appendices.....................................p.15-18

 Glossary..p.19-20

�
Introduction

The Fermi National Accelerator Tevatron is the first large superconducting synchrotron in the world. It was commissioned in 1983. All of the bending guide field magnets, quadrupoles, and correction magnets are cooled at ~40 Kelvin by liquid helium, providing essentially zero resistance to electric current flow.

Being that superconducting magnets are an essential part of the Fermilab accelerator complex, there must be a system of accounting for the magnets, their properties and their location in the accelerator. Fior fifteen years, this information has been collected and organized using a relational database management system. In a relational database, the information is organized into relationships consisting of several properties.

In this paper, I will explain the approach taken to achieve the desired results. The main goal of the project is to create a front end to the Tevatron Magnet Database via the World Wide Web (WWW) using the Hypertext Markup Language interface (HTML) and Common Gateway Interface scripting (CGI). Other goals include porting the database from the VAX/VMS operating system to UNIX . Successful completion of these goals will provide a user-friendly environment in which the user is able to interact with the database independently of specific hardware. The user will also be able to issue arbitrary queries and add new records to the database easily without having to master a complex query language.

HTTP server

The server used in this project is the CERN WWW Server [httpd, Hypertext Transfer Protocol Daemon]. It is a full-featured, generic server for serving files using the HTTP protocol (Berners-Lee 1). HTTP is a machine-independent and stateless protocol, meaning that it treats each request as an independent transaction, unrelated to any previous requests. "It waits for incoming connections, and forks itself to serve a request" (1). Through this server, files can be real or synthesized, i.e. produced by scripts generating virtual documents. Virtual documents are documents that are created instantly in response to a request for information (The CGI 4). Clickable images, fill-out forms, and searches are all handled by the httpd server. The environment is that of client/server in which the client (browser) sends a request for information or action to the server, according to the HTTP protocol , and the server responds. HTTP is more or less an event-driven protocol.

The Common Gateway Interface

The Common Gateway Interface defines how the Web server communicates with other programs running on the server (The CGI 1). The CGI allows the Web server to request a program and pass information to the program simultaneously.

CGI Applications

Forms

Processing forms is one of the most important uses of CGI. Forms are the part of HTML that allow the user to provide information (The CGI 2). They are dynamic, interactive documents that allow the user to enter data, select options, check off preferences, and ask questions and provide comments (Lee 1). The forms interface facilitates WWW browsing by making it an interactive process for users. They are indeed the visible portion by which users are able to access the contents of the database. Forms serve two main purposes: 1) Forms can be used to collect information from the user, and 2) Provide back-and-forth interaction (2). Forms prove very useful in enabling users to search a collection of documents.

Without a CGI script, an HTML form is useless. "The WWW server using HTTP alone cannot understand the contents of the form" (Lee 3). A CGI script is necessary to account for the limited capabilities of HTTP, interpret the form's contents, and take action according to the information contained within the form (3). For each form, there should be a specific CGI script, because the form contains variables and value fields relative to the CGI scripts that supports it.

Internal Workings of CGI

The way that CGI scripts retrieve their input depends on the server and on the operating system. As previously mentioned, the CERN httpd server is being used for this project. UNIX is being used as the native operating system. On a UNIX machine, CGI scripts retrieve their input from standard input (STDIN) and from UNIX environment variables (The CGI 7). The variables store client information such as the input search string, the format of the input, and the remote host and user passing the input.

The CGI script has two options once it starts running: 1) It can create and output a new document, or 2) Provide the URL to an existing one. Programs send their output to standard output (STDOUT) as a data stream. The data stream has a 1) full or partial HTTP header that describes what format the returned data is in and 2) the body which contains the data conforming to the format type reflected in the header (The CGI 7). The body is not changed or interpreted by the server in any way.

Figure 2-1

A CGI script can 1) send the new data directly to the client , or 2) send it indirectly through the server. The data is sent directly to the client without any changes if the output consists of a complete HTTP header, or the output is sent to the server as a data stream (The CGI 7).

CGI scripts can be designed to query or input data directly into a database by using the established fields and rules for CGI scripting (Lee 4). "The CGI specification permits a script to be written in any programming language, provided that the host system can execute it" (4). Using an interpreted language for CGI scripting provides the options of editing and testing a script at any time.

CGI is one of the most widely used approaches for integrating databases with the WWW. Advantages to this approach include:

	• one client serving as a front end for multiple databases

	• one database talking to multiple clients, each with its native platform interface characteristics

	• changing the database query model and not requiring that all clients in the field be changed--only the form documents accessed by the clients (AII 17).

Disadvantages to this approach include:		

	• the interface not supporting an exhaustive set of data types

	• the forms interface being form oriented rather than field oriented, so that it is not as robust as possible (All 17).

		

Languages and Tools

PERL

PERL (Practical Extraction & Report Language) is the most popular language used for CGI scripting. "It handles strings of text particularly well and borrows many of the strengths of C and Bourne shell. PERL is the language used in this project primarily because it contains extremely powerful string manipulation operators and functions to deal with binary data. Other attractions to PERL include:

	•	its high portability

	•	its high availability

	•	its simple and concise constructs

	•	its ease in calling shell commands, and

	•	its provisions of some useful equivalents of UNIX system functions (The 	CGI 11).	 	

Practical Extraction & Report Language (PERL) can be used to form Structured Query Language (SQL) queries to read the information that is within the database. Once the information is retrieved, it can be formatted and sent to the client.

p.4 Figure 1-3 modify

Rim-A Legacy Relational Database Management System

Rim was one of the first widely available relational database management tools. It was developed in 1978 as a product of the Boeing Computer Services program. It has been in use at Fermilab for about fifteen years. It was specifically designed to be portable between computers and operating systems without the need for customization (Fox 2). The primary advantage of a relational database such as Rim is its structured simplicity (2). The user does not need to understand the parent-child relationships that exist in hierarchical databases or the pointers of a network database (2). Data is represented easily by the use of tables.

Although Rim is now outdated, its query language is very similar to modern SQL. Rim provides an easy-to-use function interface for users who need to access a Rim database from within their programs (Fox 4). The interface provides FORTRAN-77 functions, to issue Rim queries and to transfer data between Rim and the user’s program.

Rim does not provide a convenient interface for adding or modifying data, and it has no screens (5). Rim is most useful for 1) databases that are not updated frequently, or 2) dynamic databases that will be updated by user programs.

Although Rim was leading technology at its genesis, it no longer is capable of meeting the increasing needs of relational database users. Nevertheless, current technology has provided a way in which legacy database systems such as Rim can be updated without having to rewrite the legacy codes by which a database functions.

W3-mSQL

CGI scripts can become rather involved. W3-mSQL is an interface between the WWW server and mSQL (W3-mSQL). It is a tool that can be used to ease the use of a relational database behind the WWW server (W3-mSQL). With W3-mSQL, one can embed SQL queries within HTML forms, thus yielding automatic results. The W3-mSQL program is used as a CGI script that the HTML forms are passed through (W3-mSQL). W3-mSQL was tested out as a possible tool to use in this project. Modifications would be needed to handle the Rim query language.

mSQL

mSQL is a lightweight database engine designed to provide fast access to stored data with low memory requirements (mSQL 1). mSQL offers a subset of SQL as its query interface (1). The mSQL package consists of the database engine, a terminal "monitor" program, a database maintenance program, a schema viewer, and a C language Application Program Interface (API) (1). The database engine and the API function in a client/server environment over a TCP/IP network (1).

Results

Conclusions

The results of the project now provides a way in which a user can access the Tevatron Magnet Database via the WWW. Users can select options that will allow them to query a database by magnet number and magnet location. A user is also able to retrieve comments about a magnet according to its magnet number. Although there are still more options to be provided, a template has been formed that will facilitate providing more capabilities.

I feel that this project was successful. I was exposed to several new languages and learned a great deal about the internal workings of the Internet and the internal workings of relational database systems. I do foresee that in the future that there will be a more systematic approach ,that will not require mastering new languages, to updating legacy databases.

Acknowledgments

I would like to thank the SIST committee for allotting me the opportunity to work at Fermilab this summer, and the Accelerator Division for having me work in their division and providing an invaluable work experience.

References

"An Instantaneous Introduction to CGI Scripts and HTML Forms." URL: 	http://kuhttp.cc.ukans.edu/info/forms/forms-intro.html.

Berners-Lee, Tim and Ari Luotonen. "A Guide to a World-Wide Web 	Hypertext Daemon." CERN httpd Reference Manual. May, 1994.

Fox, Jim. Rim Users Manual. University of Washington: University Computing 	Services. February, 1990.

Lee, Linda and Chris Savage. "Web Forms and CGIs: Making Web Pages 	Interactive." Information Technology Services-National Library of 	Canada. December, 1995. URL: 	http://www.nlcbnc.ca/pubs/netnotes/notes19.htm.

"Mini SQL: A Lightweight Database Engine." Release 1.0.11. Jan 1996.

"The Free On-line Dictionary of Computing." URL: 	http://wombat.doc.ic.ac.uk/foldoc/contents .html.

Wilson, Martin N. Superconducting Magnets. New York: Oxford University 	Press: 1983.

"W3-mSQL." URL: http://Hughes.com.au/product/w3-msql/manual-1/w3-	msql.htm.

�

