

Fermi National Accelerator Laboratory

Wide Band Photon Lab

Focus (E831) Experiment

Casey B. Peele

Elizabeth City State University

August 2,1996

Abstract:

	Focus E831 is an upgraded version of it's predecessor E687. This experiment will collect data over a period of a two year fixed target run. Based on experience with E687, Focus expects to fully reconstruct 10^6 charm particle decays.

	

Introduction

	E831 is photon production experiment located at the Wide Band Photon Lab area at Fermilab. It is an upgraded version of it's predecessor, E687. The E831/E687 detector is a large aperture fixed target multiparticle spectrometer which features excellent particle and vertexing for charged hadrons and leptons. A photon beam of mean energy 200 Gev which is derived from bremmstrhlung of secondary electrons of the Tevatron proton bean is directed to a Beryllium target; charged particles which emerge from the target are tracked by a Silicon microvetex detector consisting of twelve planes of microstrips arranged in three views, providing a high resolution separation of primary of primary (production) and secondary (decay) vertices. Downstream difficulties of charged particles in two analysis magnets of opposite polarity are measured by five stations of multiwire proportional chambers. Three threshold multicell Cerekov counters are used to identify electrons, pions, kaons, and protons. QCD studies using double charm events, a measurement of the absolute branching fraction for the DZero meson, a systematic investigation of charm baryons and their lifetimes and searches for DZero mixing, CP violation, rare and forbidden decays, and fully leptonic decays of the D+. 	This paper will discuss the different types of computer software that were used in this experiment. In which they

are as follows, FORTRAN, C language, Perl, Postscript, and Ghostscript. In addition to the explanation of the software the writer will demonstrate a simple program in FORTRAN.

	However, the Focus (E831) experiment runs over a span of two years at a time, so there are always questions to be answered. For instance, when the beam isn't running the physicists are programming, making repairs, and discussing different solutions for this illustrious experiment. This is mainly where the computer software play a major role in this process. Most of the calculations are derived from the

2.

use of the different software. Also once the experiment starts to give some feedback, there must be a program that can detect any errors on the data tapes that recorded the information.

	The first type of software that will be discussed is FORTRAN, in which is one of the most used languages in this experiment. FORTRAN is mainly responsible for the numerous calculations of the experiment. This is due partly because of years of long research which has produced highly efficient optimizing compilers and partly to the millions of lines of tested, portable code that is already in use. FORTRAN can also be very difficult language to understand. For instance, when you hear the word Flint it could meaningless to someone who is just trying to understand the concepts. However the meaning of the term is it is a source code analyzer that provides local and global analysis, cross reference tables, program statistics, and calling trees. In addition to FORTRAN programming in order to program in this particular type of language one must use a f77 statement. This lets the computer know which compiler to use. Here is an example of a FORTRAN program in action.

PROGRAM sleep_deprivation

	IMPLICIT NONE

! Important variables which will affect students' level of awareness

INTEGER :: Sleepless_nights = 0, class_naps = 0, dew_cans = 0

REAL :: Sleepless_quotient = 100.0

! Obtain important data items from the user

PRINT *, "Please enter the number of nights that you have 		stayed up past 2 AM."

READ *, sleepless_nights

PRINT *, "And how many catnaps have you taken in class ?"

READ *, class_naps

3.

PRINT *, "Finally, how many cans of Mountain Dew have you consumed ?"

READ *, dew_cans

! Calculate a measure of the student's coherence

sleepless_quotient = 10 * sleepless_nights - 3.25 * 				class_naps & - 1.5 * dew_cans + 100

! Display the student's SQ score and an appropiate message 			based on that score

PRINT *, "Your SQ score is: ", sleepless_quotient

IF (sleepless_quotient > 120.0) THEN

 PRINT *, "Your SQ score is above average. Though this is 	 	 not unusual & & for a PGSS student, you might want to consider 	 getting a & & little extra shut-eye tonight."

ELSE IF (sleepless_quotient > 80.0) THEN

 PRINT *, "Your SQ score is in the normal range. You are 	 	 	 to be commended. & & This is not easy for a Governor's School 	 student to achieve."

ELSE

 PRINT *, "Error !!! It is theoretically impossible for a 	 	 	 PGSS student to & & be as aware as your SQ score indicates. 	 Please run this & & program again ."

 END IF

END PROGRAM sleep_deprivation

	The next language that will be discussed is C language. This language replaced the once so ever popular B language. Now C is somewhat compatible to FORTRAN, however there are some measures that will make the difference. One way to learn the C language to perfection is to write and read a lot of code in it. Another good preparation method is to take some existing programs that have already been written and convert them to C. This way if the program does not work in C, then the problem isn't the original, it is in the translation. Now in C one must be careful when it come to nesting procedures, because in C these nested procedures are read like the

4.

others. Also C is very case sensitive when it comes to upper and lower case letters. For example, XXX, xxx, Xxx are three different names in this language. In C, constants are spelled with uppercase letters while variables are spelled with lowercase letters. Most of the words that are keywords in C are always lowercase. Now to prove the linkage of C and FORTRAN, they both generally use both filename extensions and the file content to determine how to handle the files listed on the command. For instance, for C one uses; C source, e.g., myfile.c and for FORTRAN; FORTRAN source, e.g., myfile.f. So it is proven that one could very well take the place of the other.

	Perl is the next language that will be discussed in this paper. Perl is a very practical language and it is much more practical than C. Perl is an interpreted language optimized for scanning arbitrary text files, extracting information from those text files, and printing reports based on that information. Perl combines within itself some of the best features of C, sed, awk, and sh, so people familiar with those languages should have little difficulty with it. The best thing about Perl is that there is no limit to the amount of information that can be put into its memory. In this process Perl use some high-tech procedures to scan large amounts of data very quickly. Setuid Perl scripts are safer than C programs through a dataflow tracing mechanism which prevents many inexcusable security holes. There are also translators that can turn other scripts such as sed or awk into Perl scripts. To sum it up, if one has a large amount of data to store or the particular language exceeds its capabilities, then use Perl.

	In addition to the more commonly used languages there is yet another in which is the Postscript language. This is an optimized language specialized for printing graphics and text on film or paper. However, the main function of Postscript is to provide descriptions of

5.

images in a independent manner. To better understand Postscript compare it to a RPN calculator. For they are both stack-based and typically interpreted in about the same manner. This language isn't that difficult to understand, but one still must be careful of simple mistakes. There isn't that much to elaborate on about the Postscript language, but it is one of the many software that is used in this experiment.

	Last of all there is the Ghostscript language that coexists with the Postscript language. Ghostscript is an interpreter of Postscript language. Even though it is similar to Postscript it still has several uses. The first thing it does is it displays a Postscript file (avoid killing trees). Secondly, it lets you know wheter or not if one needs to print to reduce the nember of trees killed. Finally, Ghostscript can print a postscript file to a non-postscript printer in which kills more trees. It take a lot long commands to write in Ghostscript, fortunately there is Ghostview that will also allow one to access Ghostscript. This language is used primarily to show the layout of whatever was being put to an image in the process of the experiment.

	In closing, my knowledge of some of these languages is not to extensive, however I still found them very easy to use with a little guidance from my supervisor. Although I wish that I would have had the opportunity to learn more than what I initially learned during my internship.

	

	

Acknowledgements

	I would like to thank my past professors of Physcis at Elizabeth City State University. Also I would to thank my supevisor Arthur Kreymer for showing me some of the state-of-the art technology in Physics. I feel a lot more comfortable with Physics now, because of some of the new methods and technology that I have learned this summer.

REFERENCES

Computing Division, Unix at Fermilab., March 15, 1995.

Mark, Dave, Macintosh C Programming PrimerVolume II.,Addison-Wesley 		Publishing company, Inc., Ontario, Canada June 1991.

Kreymer, Arthur, "Assistant Manager at Wide Band Photon Lab." Batavia, 		Illinois May 1996.

