CVS Version Tree Display Project

Richard Thomas

Benedict College

Columbia, SC 29204

Supervisor

Dr. David J. Ritchie

Computing Division

Fermi National Accelerator Laboratory

Summer Internships in Science and Technology

Batavia, IL 60510

Summer 2003

1.
Abstract

This paper describes a summer project relating to the D0 Experiment. The project was to write a program that would generate one or more web pages that displayed the version tree of selected software packages, such as the d0reco package.

2.
Introduction

The DZero experiment was proposed for the Fermilab antiproton-proton Tevatron Collider in 1983 and approved in 1984. After 8 years of design, testing, and construction of its hardware and software components, the experiment recorded its first antiproton-proton interaction on May 12, 1992. The data-taking period referred to as "Run 1" lasted through the beginning of 1996. Collisions were studied mainly at an energy of 1800 GeV in the center of mass (the world's highest energy), with a brief run taken at 630 GeV during this period. Run 1 is complete. Run 2a is now underway. Run 2b is planned for the near future.

For many years, our understanding of nature has revolved around four separate, unrelated forces -- gravity, the electromagnetic force, the weak force, and the strong force. Over the past three decades, many experimental and theoretical advances have led to a coherent and predictive picture of the strong, electromagnetic and weak forces called the Standard Model (SM).

During the 1960’s and 1970’s, it was recognized that the electromagnetic and weak forces could be described through a unified picture, and the theory of electroweak interactions was born. The strong and electroweak interactions are specified separately, but are not unified. There are compelling reasons to believe that the SM, though remarkably predictive and extremely well tested, is only an approximate theory to nature. Many other theories have been postulated that provide unification of the forces but they have not been tested.

According to the Standard Model, the particles created at the Tevatron fall into two broad classes: leptons (electron, muon, tau, and the neutrinos associated with each) and hadrons (protons, pions, kaons, etc.)—the latter being composed of combinations of the six quarks. The quarks and leptons are mirrored by their respective antiparticles. In addition, there are gauge bosons that transmit the fundamental forces. These include the photon (electromagnetic force), the gluons (QCD strong force), and the W and Z bosons (weak force).

The Fermilab accelerator complex, with its eight distinct major components, provides high intensity proton and antiproton beams at the world's highest energy (900 GeV for each beam). These beams collide at two locations in the Tevatron ring, where experiments are performed by the CDF and DZero collaborations. The DZero experiment contains many sophisticated components, which include not only the particle detectors, but also the electronics needed to select and digitize events, and the software necessary to monitor the experiment and reconstruct events written to magnetic tape.

A schematic diagram of the DZero detector is shown in Fig. 3. The following description is drawn from the state of the detector in Run I. There are three major subsystems: a collection of tracking detectors extending from the beam axis to a radius of 30 inches; energy-measuring calorimeters surrounding the tracking region; and, on the outside, a muon detector that deflected muons using solid iron magnets.

[image: image1.wmf]
Fig. 3: A schematic view of the DZero detector. The tracking chambers near the beam are shown in purple, gray and pink. The calorimeters are shown in yellow, blue, and green. The muon chambers are shown in orange, and surround the iron magnets (in red).

The entire detector is about 65 feet long, about 40 feet wide and high, and weighed 5500 tons. It rests on a moveable platform that permits detector assembly and commissioning in accessible areas, prior to positioning in the collision hall for operation.

In all, the detector has over 120,000 channels of individual electronic signals. Some of these were used to take a fast "snapshot" of the properties of an event, and to decide whether it was a candidate for further study. This "triggering" process proceeds in stages: the first level is completed within 4 microseconds, before the next accelerator beam-bunches arrived at DZero. A second level of trigger decision follows the digitization of all information in a farm of dedicated microprocessors. Events that survived this screening process are written to tape and reconstructed in detail for subsequent analysis.

The computer software for DZero is almost completely custom-written. The software is primarily written in the C++ programming language. The software is organized into units called packages. The software is the means by which the experiment is monitored and controlled. Through it, the microprocessors in the trigger system are controlled, the data flow to tape is organized, and the reconstructions of particle tracks from the signals measured in the detector are done. In this way, large data samples (70 million events, 3 Terabytes of data) are obtained. In addition, special attention has been paid to graphical displays of events and detector performance. Many millions of simulated events have been created for study of detector performance and specific physics processes through "Monte Carlo" programs that mimicked the response of the detector.

This paper focuses on the project to develop a program to make a web display of the versions of software packages as checked into the code repository. In addition, a second project was undertaken in which fits were made to the measurements of bearing placements on the carbon fiber bulkhead that is planned to be used to hold the Silicon sensors in the proposed RunIIb silicon detector.

3.
Tools used
3.1
UNIX

The D0RunII release used in this project resides in a computer called d0mino.fnal.gov. This computer runs the IRIX version of UNIX operating system developed by Silicon Graphics (SGI). Therefore, a familiarity with the UNIX operating system was crucial.

3.2
The shell programming language

The UNIX operating system can be broken down into three basic components: the scheduler, the file system, and the shell. The Shell is the UNIX system’s command interpreter. It is the part of the UNIX system that sits between the user and the system, forming a shell around the computer that is relatively consistent in its outward appearance. It also provides a facility called the shell programming language, which was used during the implementation of the project.

3.3
Emacs editor

Emacs is a text editor that is extensible, customizable and has a self-documenting real-time display. Two screen editors are supplied with the UNIX System V Release 2.0: vi and emacs. Emacs was the editor mainly used.

3.4
CVS

CVS created in April 1989 by Brian Berliner, is a version control system that can be used to record the history of changes made to a set of source files. The set of source files is known as a module. Generally, a module corresponds to a package in the DZero RunII software. CVS stores all the versions of the source files of a module by only storing the differences between versions. The location in which the storage takes place is on a separate computer on the network that acts as the code repository. The entire D0RunII release (consisting of some 500 packages) sits in a CVS repository. In order to make any changes to it, a copy of the different packages had to be extracted into a local release area. Once the changes had been made, they were checked back into the repository.

3.5
Python

Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl, Perl, Scheme or Java. It was created in the early 1990s by Guido van Russom at Stitchting Mathematisch Centrum (CWI) in the Netherlands as a successor to the language known as ABC. It is a simple but extremely powerful programming language: It supports modules, classes, exceptions, very high level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as well as to various windowing systems (X11, Motif, Tk, Mac, and MFC). The Python implementation is portable: it runs on many brands of UNIX, on Windows, DOS, OS/2, Mac, Amiga... Because of these characteristics and because Python was selected as the DZero scripting language, Python was used to implement all major scripts related to the different projects.

3.6
HTMLgen

HTMLgen is a Python class library for the generation of HTML documents developed by Robin Friedrich. It includes such features as the customization of document template graphics and colors through the use of resource files, minimizing the need for modifying the module source code. It also supports tables, frames, forms and client-side image maps.

4.
CVS Version Tree Display Project

4.1
Goal

Phase 1: Write a Python program that analyses the output from a CVS history command and displays the history in terms of separate version trees (i.e., branches) as a web page.

Phase 2: Extend the report to provide an option to display the branches in a graphical manner using Tkinter on the screen.

4.2
The Structure of the D0RunII Software.
D0 makes weekly test releases of all its software packages to directories on computers running the IRIX and LINUX operating systems. Usually, the three most recent test releases are available on disk, while production releases are provided approximately every 2 to 3 months. The test releases are the ones that are actively developed with all kinds of additions to the software. The production releases are more limited in terms of the acceptable additions to the software. They are usually focused towards achieving a particular milestone of functionality. With the test releases, essentially any developer can add or make changes. With production releases, the changes are restricted by manager of the production release to be only those that are likely to help achieve the milestone functionality goal. Whether test release or production release, the code is compiled, linked and tested to a modest level several times over a week’s time. At the end of each build, email notifications are sent to the developers responsible for the packages that break (i.e., fail to compile, link, or pass its tests). The developers are expected to figure out the problem, make the source code changes necessary to fix it, check the changed code back into the CVS source code repository, tag it and request that the newly tagged version be included in the next build of the software.

Taking the d0reco module as an example, the developer obtains the entire d0reco source from the CVS repository and places it into a local directory. The developer then makes the changes, tests those changes, and then—once it passes its tests—checks the code back into CVS. Once the developer is happy with the changed software, he or she gives it a unique identifier (term a “tag”). The format of a tag must follow standard guidelines. In the case of test releases, the developer places the tagged, changed software back onto the main trunk of the release tree in the CVS repository. In the case of production releases, the developer places the tagged software back onto a branch of the main trunk that is devoted to that particular production release.

The tags follow a specific syntax as a way of designating what is being done. For example, in the case of the p14 release, the tag “p14-br” signifies that the lines of code that are tagged by this are part of the “head of the p14 branch”—that is they are the latest release of what is called “p14”.

When examining the results of doing a “cvs history –Tan d0reco” command, the command shows an entry such as: “[p14–br:v02-15-13]”.which shows that the p14 branch has been created as split off the main trunk at the location of the v02-15-13 release. In this way, there is a means to reference any position of the design tree for the d0reco module.

	T
	2003-06-03
	16:18
	+0000
	melanson
	d0reco
	[p14-br-04:D]

	T
	2003-06-03
	16:18
	+0000
	melanson
	d0reco
	[p14-br-04:p14-br]

	T
	2003-06-03
	22:16
	+0000
	suyong
	d0reco
	[v02-00-08:A]

	T
	2003-06-03
	22:48
	+0000
	suyong
	d0reco
	[p15-br-07:p15-br]

	T
	2003-06-03
	23:11
	+0000
	suyong
	d0reco
	[p15-br-08:p15-br]

	T
	2003-06-04
	19:28
	+0000
	jonckheere
	d0reco
	[p14-03-00:p14-br-04]

	T
	2003-06-10
	17:43
	+0000
	jonckheere
	d0reco
	[p15-03-00:p15-br-08]

4.3
Implementation
To accomplish the goal of phase 1 of this project a test script was written in emacs and made executable. The aim of this was to get a script that would load in a specified data field in the form of a text document and give an order array of the given data in a text format. The script that was implemented in the shell programming language is shown in Appendix A along with a sample output of executing the script.

The main drawback of this script was the fact that the tags had to be executed from the d0reco repository in CVS and then made in a text document that would be subsequently loaded in the script to obtain the desired output. Even though this was a major drawback of the initial script, the script accomplished the task stated in phase 1 of the project. This leads us to second phase of the project where the decision was made to start out by using the HTMLgen module to create an html document that displays the branch information of the module.

The final script is explained below. For the complete code, please refer to Appendix B.

brrep.py

Function definitions

def print_menu():

This is a function that calls a menu of options available to the user.

def print_all_data(bodylist):

This calls a function that generates an output of all the tags loaded in the repository.

def print_trunk_data(bodylist):

This calls a function that gives the tags on the trunk of the design tree.
def print_p13_branch(bodylist):

This returns the tags on the p13 branch in the order of creation.
def print_p14_branch(bodylist):

This returns the tags on the p14 branch in the order of creation.
def print_p15_branch(bodylist):

This returns the tags on the p15 branch in the order of creation.
def load_data(filename):

This function initially loads the text data from a specified repository. It was subsequently modified to be an automation rather than the initial manual implementation.
def main():

This generates the html page that displays the output of the above function calls.

4.4
Results
This is an example of the result of a test run of the program.
Branch Report
The branches are as follows:

	Module

	Author
	Date
	Time
	Time-Zone
	Module
	Tag

	trunk
	
	
	
	
	

	serban
	2000-01-10
	19:15
	+0000
	d0reco
	[v00-08-02:A]

	serban
	2000-02-10
	21:59
	+0000
	d0reco
	[v00-08-03:A]

	serban
	2000-03-07
	20:47
	+0000
	d0reco
	[v00-08-02:A]

	p14
	
	
	
	
	

	jonckheere
	2003-01-29
	20:41
	+0000
	d0reco
	[p14-br:p13-08-00-a]

	melanson
	2003-02-04
	01:03
	+0000
	d0reco
	[p14-br-01:p14-br]

	melanson
	2003-02-12
	16:16
	+0000
	d0reco
	[p14-br-01:p14-br]

	p15
	
	
	
	
	

	jonckheere
	2003-03-11
	18:10
	+0000
	d0reco
	[p15-br:v02-00-03]

	jonckheere
	2003-03-11
	18:10
	+0000
	d0reco
	[p15-00-00:v02-00-03]

	suyong
	2003-03-17
	17:16
	+0000
	d0reco
	[p15-br-01:p15-br]

4.5
Conclusion

The purpose of this project was to write a program that displays the output of a cvs history command as a webpage. The project was a success. It is expected that future versions will result in a useful tool to present this information.
6
Summary

Being from a Physics background, it was a great learning experience to take part in both projects. I discovered the routine that one should follow when developing a program and learned a lot about Python, UNIX and how to generate HTML web-pages. I believe this will be beneficial to me in my future endeavors in graduate school.

7
Acknowledgements

I would like to thank David Ritchie, Alan Jonckheere, Paul Russo And Geoff Savage for taking the time out to mentor me and making sure that my experience here was the best possible. I would also like to give a special thank you to the SIST Committee for giving me the opportunity to conduct this research and ensuring that I make good use of it.

8
References

“Physics Highlights from the D0 Experiment 1992-1999.”

http://doserver1.fnal.gov/projects/results/runi/highlights/runi_summery.html
Kochan, Stephen G. and Wood, Patrick H. Wood. Exploring the UNIX system. Hayden
Book Company. New Jersey, 1984.

Lundh, Fredrik. Python Standard Library. O’Reilly & Associates, Inc. California, 1999.

Lutz, Mark and Ascher, David. Learning Python. O’Reilly & Associates, Inc. California, 1999.

Appendix A

Bearing Measurement Data Fitting

1.
Abstract

The bearing measurement data fitting task was to fit bearing placement data obtained from measurements of the bearings that support the Silicon sensors in the Run IIb silicon detector that is under development.
2.0
Introduction

The current DZero silicon tracker was built to withstand the 2 – 4 fb-1 of integrated luminosity originally projected for Run 2. Because of the tantalizing physics prospects a higher integrated luminosity could bring, Fermilab has encouraged efforts to take data during an extended run of the Tevatron collider, called Run2b. This would deliver a total integrated luminosity of 15 fb-1 over the course of the full Run 2. Unfortunately, the higher integrated luminosity expected in Run 2b will render the inner layers of the present silicon tracker inoperable due to radiation damage. Therefore, a replacement of the silicon detector in approximately three years with minimal Tevatron down time is necessary. The DZero collaboration has carefully studied two options for a Run 2b silicon tracker replacement: “partial replacement” and “full replacement.” In the partial replacement option, the present tracker design is retained and the inner two silicon layers are replaced with new radiation tolerant detectors. In the full replacement option, the Run 2a tracker is replaced with a new device. An internal review of these two options identified significant risks with the partial replacement option. These include the risk of damage to the components not being replaced, the long down-time required to retrofit the existing detector, an inadequate supply of the SVX2 readout chips, difficulties in adequately cooling the inner layers, and marginal radiation hardness in the layers not being replaced. Furthermore, it is nearly impossible in the partial replacement option to optimize the detector for the Run 2b physics program. For these reasons, DZero decided to proceed with the full replacement option and build a new silicon tracker that is optimized for the Higgs search and other high-pT physics processes.

3.0
Tools Used

3.1
MATLAB
MATLAB® is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.

3.2
Excel
Excel is the spreadsheet software from Microsoft that was used in the creation of the test bench of the Bearing Measurement Data Fitting task.

4
Bearing Measurement Data Fitting Task

4.1
Goal

The goal of this task was to use Excel to analyze the placement of the ruby bearings on the carbon fiber disc in the proposed RunIIb silicon detector. The data from the bearings placed on the individual rings was to be fit to the intended circle on which the bearings were to be placed. Through the fitting process, the standard deviation of the measured positions of the bearings as compared to the intended positions was to be computed.

4.2
Implementation

An Excel spreadsheet was developed starting with one provided by Kurt Krempetz that worked for other data. After understanding the approach of this spreadsheet, my supervisor and I developed one for the data in the format of the current measurements.

4.3
Outcome

Several rings of data were fit. The implementation appeared to work correct in that the deviations appeared to be correct based on manual estimates. The standard deviation was found to be XX. Of concern were some systematic variations in the standard deviation. In particular, a majority of the measurements seemed to have negative deviations in both coordinates indicating that the measurements were systematically below and to the left of the intended points. This matter is still being studied.

4.5
Conclusion

The Bearing Measurement Data Fitting task was completely different from the CVS Version Tree Display project. I found the bearing task to be less absorbing than the CVS project. However, the Bearing Measurement Data task helped me to develop certain skills relevant to making statistical analysis of given data which I know will be important when furthering my education. For this reason, I am pleased to have been able to do this task and happy to have contributed to the DZero effort to enhance their detectors for Run IIb.
