
D∅ Calibration Database Browser

Henry Barnor
Oberlin College

http://www.cs.oberlin.edu/˜hbarnor

Supervisor: Taka Yasuda

August 7, 2003

http://www.cs.oberlin.edu/~hbarnor

Abstract

The key to analyzing data from the D∅ detector is the calibration database. This
paper describes the design and implementation of a web-based browser for the
D∅ calibration database.

Contents

1 Introduction 4

2 Design Considerations 4

3 First Attempt - MISWEB 5
3.1 MISWEB Implementation . 6

4 Problems with MISWEB 6

5 Second Attempt - Java Applet 6
5.1 Package calibDbView .8

5.1.1 Class diagram of calibDbView package9
5.1.2 D0PE class .9
5.1.3 ID0View interface . 9
5.1.4 D0PPanel class .9
5.1.5 SearchPanel class .10
5.1.6 TablePanel class .10
5.1.7 D0ChartPanel class .10

5.2 Package calibDbData .11
5.2.1 Class diagram of calibDbData package11
5.2.2 OracleConnector class11
5.2.3 DataManager class .11
5.2.4 D0TableModel class .12

5.3 Package calibDbData.states .13
5.3.1 Partial class diagram calibDbData.states package13
5.3.2 AState class .14
5.3.3 ADrillState class .14
5.3.4 APlotState class .14
5.3.5 AChartState class .14
5.3.6 CustomChartState class14
5.3.7 TopState class .14
5.3.8 NullState class .15

5.4 Package calibDbCommand .15
5.4.1 Class Diagram of calibDbCommand package15
5.4.2 D0PACommand class .15
5.4.3 AFrameCommand class16

1

5.4.4 SwitchComponent class16
5.4.5 D0Query class .16
5.4.6 TopQuery class .16
5.4.7 ChartQuery class .16

5.5 Plotting Library - JFreeChart .16

6 Problems with Java Applet 16

7 Third Attempt - Java Server Pages 18
7.1 Package beans .18

7.1.1 DrillBean class .19
7.1.2 TableBean class .19
7.1.3 SearchBean class .19
7.1.4 ChartBean class .19

7.2 Package calibDbServlets .19
7.2.1 SearchServlet class .19
7.2.2 DrillServlet class .19
7.2.3 DrillServlet class .19

7.3 Package calibDbData.states .20
7.3.1 IServletState interface20

7.4 Package calibDbData .20
7.4.1 CalibDatasetProducer class20

7.5 Java Server Pages(JSP) .20

8 Conclusion 22

9 Acknowledgement 23

References 24

Appendix 25

A Class Diagram of subclasses of ADrillState 25

B Class Diagram of subclasses of APlotState 26

C Model-View-Controller Design Pattern 27

D The State Design Pattern 28

2

E The Singleton Design Pattern 29

F The Command Design Pattern 30

G The Template Design Pattern 31

H The Observer-Observable Design Pattern 32

I The Null design Pattern 33

List of Figures

1 Comparison of data in a tabular form to data in a plot form5
2 The MISWEB search page .7
3 A page returned by MISWEB .8
4 The MISWEB drill down scenario 8
5 The Class diagram of the calibDbView package9
6 The search panel .10
7 A table panel .11
8 The class diagram of the calibDbData Package12
9 The class diagram of the calibDbData.states package13
10 The class diagram of the calibDbCommand package15
11 The plot of data using JFreeChart17
12 A page returned by the server-side implementation21
13 Server-side with multiple drill down columns21
14 Server-side plot of data .22
15 Class Diagram for subclasses of ADrillState25
16 Class Diagram for subclasses of APlotState26
17 The model-view-controller .27
18 The Class Diagram of the State Design Pattern28
19 Class Diagram of the Singleton Design Pattern29
20 Class Diagram of the Command Design Pattern30
21 Class Diagram of the Template Design Pattern31
22 Class Diagram of the Observer-Observable Design Pattern32

3

1 Introduction

The Fermi National Accelerator Laboratory, Fermilab, advances the understand-
ing of the fundamental nature of matter and energy by providing leadership and
resources for qualified researchers to conduct research at the frontiers of high en-
ergy physics and related disciplines. One of its experiments is the D∅ experiment.
The research is focused on precise studies of interactions of protons and antipro-
tons at the highest available energies. The D∅ detector is used to observe these
interactions. The process of converting interactions to electric signals is described
by the equation:

ε = aV + b

Wherea andb are constants.
a = multiplication factor(gain)
b = offset(pedestal value)
The process of obtaining these constants is called calibration. This is done by
sending a known voltage through each channel1. The constants for each channel
are calculated and stored in a database. Researchers use computer programs that
query the database for the values and combine it with data recorded during an
actual proton/antiproton interaction to recreate what happened in the interaction.
However, researchers need to look at the data themselves to ensure that constants
in the database are reasonable. My project is to provide a graphical way for the re-
searchers to review the data without having to learn complex database commands.

2 Design Considerations

The D∅ experiment is an international collaboration which involves scientists in
about 19 countries. They will need to access this data from wherever they are;
thus a web based system is the best way to go. The users should be presented
with a webpage that allows them to start from the top level of the database and
explore the hierarchy of the database. Due to the estimated size of all the data in
the database, the user should be given the option of searching for the calibration
runs that interest him/her. Each calibration has a unique number associated with
it called the calibration id. This is an obvious search parameter. The time of the
run, the luminosity2 and version3 can also be used as search parameters.

1There are about 900,000 electric channels in the D∅ detector.
2Luminosity -is a measure of the number of collisions between proton and anti-proton beams
3Version numbers are used when a calibration run has to be redone

4

Looking at a table of data can sometimes be daunting especially when one has
to look at about a 100 or more rows of data. On the contrary, it is much easier to
obtain pertinent information from a plot of the data. There are several advantages
to using plots:

• It is easier to spot anomalies from a plot;

• Patterns can also be easily recognized;

• Comparisons of various calibration runs can be easily made.

Figure 1: Comparison of data in a tabular form to data in a plot form

The user should therefore be given the option of plotting the constants against
the various channel id’s.See Figure 1.

There is a possibility that some users will be well versed in SQL4 syntax. These
users should be provided with a field that allows them to type in an SQL query
that will be executed and a plot of the results displayed.

Implementation

3 First Attempt - MISWEB

For my first attempt at implementing this system, my supervisor suggested MIS-
WEB - a database tool developed by a contractor for Fermilab. It is implemented

4SQL is a programming language for databases[3]

5

in perl and allows a developer to query any OracleR©database running SQL*Net
using basic html form elements.

3.1 MISWEB Implementation

To implement the system using MISWEB, I created a web-form with fields for
the search parameters discussed above. Hidden in the html for the page is the
name of the calibration database, the username and password for connecting to
the database. The name of the table and the columns that MISWEB should return
were also in hidden in the html. Variables in the html defined for MISWEB which
of the columns it was returning could act as a drill down column. MISWEB also
required that a link to another html page which defined all of the above options
for the next level be included.

When these pages are loaded in a web browser, the browser displays the form
and ignores the MISWEB specific options hidden in the form. See Figure 2. How-
ever, when the user submits the form, the hidden options together with the values
the user entered in the fields are sent to MISWEB for processing. MISWEB then
returns a page containing the results of the query in a tabular form to the user. See
Figure 3.

4 Problems with MISWEB

MISWEB is a good tool for displaying data from a database in a webpage, but it
is not the right tool for exploring a database. It lacks some very basic exploration
functionality. MISWEB does not allow the programmer to specify more than one
drill down direction. Thus we can only drill down in one direction. See Figure 4

Another problem with MISWEB is that, it cannot generate plots of the data.
Therefore other alternatives were explored.

5 Second Attempt - Java Applet

In order to counter the problems associated with MISWEB and to satisfy all of the
design considerations and goals of the project, the building of a web based pro-
gram from scratch was necessary. One of the most important requirements is that

6

Figure 2: The MISWEB search page

the program must be able to plot the data. The availability of free JavaTMplotting
libraries and the power of the Java applet technology made a strong case for im-
plementing the second attempt using the JavaTMprogramming language.

Program Description

The program was written as a JavaTMapplet and was designed according to the
model-view-controller(MVC) design pattern (See Appendix C). This required
separating the code into calibDbView, calibDbCommand, calibDbData and cal-
ibDbData.states packages. These packages are outlined below with descriptions
and class diagrams5.

5Class diagrams describe the static structure of a system[1]

7

Figure 3: A page returned by MISWEB

Figure 4: The MISWEB drill down scenario

5.1 Package calibDbView

The calibdbView package holds the view of the MVC design pattern used in the
program. This package has 6 classes(D0ChartPanel, D0PE, D0PPanel, ID0View,
SearchPanel and TablePanel).

8

5.1.1 Class diagram of calibDbView package

See Figure 5, page 9.

Figure 5: The Class diagram of the calibDbView package

5.1.2 D0PE class

This is a JApplet subclass and implements the ID0View interface. It is the ap-
plet instance that is displayed on the webpage and is responsible for creating
the singletons6 SearchPanel, TablePanel and D0PChartPanel. The D0PE class
can also read parameters from the html page that allows it to connect to another
OracleR©database.

5.1.3 ID0View interface

This interface defines the method for adding and replacing panels in a windowing
environment.

5.1.4 D0PPanel class

D0PPanel is an abstract class7 that allows the windowing environment to treat all
the panels the same. It defines all the common methods and properties of panels

6Singleton - only one instance of a class in the whole program (See Appendix E)
7A class that does not provide an implementation for one of it’s method is abstract

9

that will be added and displayed. SearchPanel, TablePanel and D0PChartPanel
are all subclasses of D0PPanel.

5.1.5 SearchPanel class

This is the initial panel that is displayed. It has fields for the user to enter the initial
search parameters. SearchPanel also has a “Custom plot” button that prompts the
user for a query which is immediately plotted. See Figure 6.

Figure 6: The search panel

5.1.6 TablePanel class

This panel is responsible for displaying the values returned by the queries in a
tabular format. It uses a JTable in a JScrollPane as a view and the D0TableModel
as its model(data source). It has a “Drill Down” button for exploring the table and
also a plot button. The plot button is initially disabled but gets enabled whenever
a plot state is attained.

5.1.7 D0ChartPanel class

This panel basically holds and displays a plot of the data.

10

Figure 7: A table panel

5.2 Package calibDbData

The calibDbData package contains both the controller and model of the MVC
architecture. The classes in this package handle all the database related actions
and other processing actions.

5.2.1 Class diagram of calibDbData package

See Figure 8, page 12.

5.2.2 OracleConnector class

This classes is responsible for getting a connection to the oracle database. It has a
static method that returns a connection to the specified database.

5.2.3 DataManager class

The DataManager class is the controller for the MVC architecture used in the ap-
plet. The model is a state design pattern (See Appendix D) with the DataManager

11

Figure 8: The class diagram of the calibDbData Package

acting as the context. All events from the view are sent to the DataManager, who
in turn delegates it to its state for the actual processing. The state constructs the
necessary command and sends it back to the DataManager for execution and noti-
fication of the view. The notification process is accomplished using an Observer-
Observable design pattern (See Appendix H). The DataManager is also respon-
sible for obtaining a connection to the database and executing all queries. It uses
the OracleConnector to obtain the connection.

5.2.4 D0TableModel class

D0TableModel is an abstraction of the data being displayed. It is basically a model
to the TablePanel class. It stores the results of all queries as a vector of vectors
and notifies TablePanel whenever its data changes.

12

5.3 Package calibDbData.states

This package holds the various states used by the state design pattern of the Data-
Manager class. The various states are classes implemented using the template
design pattern (See Appendix G). Thus, the invariant behaviour is abstracted into
3 abstract classes and all other states subclass one of the 3 abstract classes.

5.3.1 Partial class diagram calibDbData.states package

See Figure 9, page 13.

Figure 9: The class diagram of the calibDbData.states package

13

5.3.2 AState class

AState is the parent abstract class and defines methods and properties common to
all states8 such as apreviousState property. It has 2 abstract methods that all
it’s subclasses must implement: theundo() method and theupdateTable(Object
obj) method.

5.3.3 ADrillState class

ADrillState is an abstract class that defines methods common to states that only
drill down the database. It provides an implementation of theundo() method
and theupdateTable(Object obj) method for all it’s subclasses. ADrill-
State has adoQuery(Point p) method that is abstract. See Appendix A for a
class diagram.

5.3.4 APlotState class

APlotState is an abstract class that defines methods common to states that are
ready to plot. It provides an implementation of theundo() method and the
updateTable(Object obj) method for all it’s subclasses. APlotState has
a doChart(int[] colIdx) method that is abstract. See Appendix B for a
class diagram.

5.3.5 AChartState class

This class is the state of the DataManager whenever there is a plot on the screen.

5.3.6 CustomChartState class

This state handles events whenever a custom plot is created.

5.3.7 TopState class

This class handles the events for the initial search query.

8All states are subclasses of AState

14

5.3.8 NullState class

This class is a null design pattern class and acts as a default state for the Data-
Manager (See Appendix I).

5.4 Package calibDbCommand

The loose coupling of the MVC architecture requires an independent communi-
cation mechanism - this is achieved using the command design pattern (See Ap-
pendix F). This package contains the classes that make up the command objects.

5.4.1 Class Diagram of calibDbCommand package

See Figure 10, page 15.

Figure 10: The class diagram of the calibDbCommand package

5.4.2 D0PACommand class

This is the parent abstract command class. It defines the constructor and the ab-
stract execute method that all subclass must implement.

15

5.4.3 AFrameCommand class

The program requires that we have a number of different views in one windowing
environment. This class provides an abstraction for communication between the
views (D0PPanels) and the windowing environment.

5.4.4 SwitchComponent class

This is a subclass of AFrameCommand and is basically the command that tells
the frame to switch views.

5.4.5 D0Query class

This is the encapsulation of a query. It is constructed by passing in the query as a
string. The execution of the query is achieved by delegating it to the DataManager.

5.4.6 TopQuery class

This is a special case of the D0Query. It is the initial search query which needs to
be constructed from multiple fields.

5.4.7 ChartQuery class

ChartQuery creates a chart from it’s query. It is thus a special case D0Query.

5.5 Plotting Library - JFreeChart

The applet uses a free Java class library to generate the plots. There are quite a
number of these libraries available on the world wide web. JFreeChart (http:
//www.jfree.org/jfreechart/) became the library of choice, because it
made the generation of a chart from a database easy. JFreeChart also supported
features like exporting charts into popular image formats. It provided support for
other Java technologies and had good documentation. See Figure 11.

6 Problems with Java Applet

The Java applet satisfies all the design considerations and goals. However, the
nature of the technology makes it undesirable in certain situations. Whenever the

16

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

Figure 11: The plot of data using JFreeChart

applet page is loaded into a web browser, the web browser downloads the class
files and runs the applet on the users computer. This introduces a number of
problems.

• This applet uses two huge libraries which need to be downloaded together
with the packages described above. On a slow network, this could poten-
tially be a problem for the user. This problem is partially solved by com-
pressing and storing all the necessary files into one big archive. The Java
JAR9 archiving technology is used for this.

• In order for the applet to run on the user’s computer, the user must install the
Java Runtime Environment(JRE) version 1.4 and up. Most browsers come
with their own JRE of a lower version and do not support the JAR archive
format. This makes the applet unusable until the user downloads the Sun
Microsystems’ JRE.

9JAR archives are basically zip archives

17

• Applets run in a security sandbox that prevent them from doing harm to a
user’s computer or using a user’s computer to do harm to another computer.
This sandbox allows the applet to only connect to it’s web-server host. Thus
the D0PE applet is prevented from connecting to the database server. This
problem is solved by digitally signing the applet. At the time of writing,
D∅ did not seem to have a digital certificate. The applet at the moment is
signed with my untrusted digital certificate.

7 Third Attempt - Java Server Pages

The D0PE applet is problematic for one very simple reason; all the processing is
done client-side10. Therefore, moving to a server-side architecture will solve all
the applet security problems.

In order not to reinvent the wheel, a java server-side technology was a reason-
able choice for the third implementation.

Program Description

The server-side implementation was written using a combination JavaTMServlet[6],
Javabeans11 and JavaTMServer Pages technology[2]. JFreeChart has support for
these technologies and can thus can still be used as a plotting library. The loose
coupling of the MVC architecture allows for easy changing of the view to a web-
based view. This was accomplished by writing a servlet class to interface with
the DataManager and various java server pages to take user input and display the
data. The packages used in the server-side implementation are described below.

7.1 Package beans

This package holds the javabeans used in the server-side implementation.

10Client-side means all the work is done by the user’s computer as opposed to server-side where
the server does all the work

11Javabeans are regular Java classes designed according to a set of guidelines [2].

18

7.1.1 DrillBean class

This bean encapsulates the state information for the server-side.

7.1.2 TableBean class

This bean is an interface to the D0TableModel. It is basically an encapsulation of
the data being displayed.

7.1.3 SearchBean class

This bean is responsible for capturing the initial search parameters and generating
a TopQuery.

7.1.4 ChartBean class

The ChartBean builds the query to be plotted and extracts the labels of the axis
and title from the query.

7.2 Package calibDbServlets

This package holds all the servlets that interface with the DataManager.

7.2.1 SearchServlet class

This servlet uses the SearchBean to update the D0TableModel with the results of
the initial search query.

7.2.2 DrillServlet class

This servlet handles all drilling using the DrillBean.

7.2.3 DrillServlet class

This servlet uses the ChartBean to configure the properies of the chart. It then
delegates the creation of the plot to the displayChart.jsp page.

19

7.3 Package calibDbData.states

This package was extended to get the servlets working with the state design pattern
used in the DataManager class.

7.3.1 IServletState interface

This interface defines the methods used by the servlets to determine state infor-
mation and queries. AState class now implements this interface and thus all states
can be used by the servlets.

7.4 Package calibDbData

JFreeChart’s jsp specification requires that the data to be plotted is created by a
class that implements the de.laures.cewolf.DatasetProducer interface.

7.4.1 CalibDatasetProducer class

This class implements the DatasetProducer interface. It acts as the data source for
displayChart.jsp.

7.5 Java Server Pages(JSP)

There are 4 jsp files three of which constitute the view. The view files are dis-
playTable.jsp, displayPlotTable.jsp and displayChart.jsp. Their functions can be
deduced from the file names.

The other jsp file, processForm.jsp, is responsible for passing the values of the
search parameters to the SearchBean. The result of the server-side implementation
can be seen in Figures 12, 13 and 14.

20

Figure 12: A page returned by the server-side implementation

Figure 13: Server-side with multiple drill down columns

21

Figure 14: Server-side plot of data

8 Conclusion

Three methods of browsing the D∅ calibration database have been described in
this paper. The MISWEB implementation was not very useful. The Java applet
implementation is a great success and is available for users who have a high band-
width and are willing to download the Sun Microsystem JRE. The server-side
implementation was built on top of the applet implementation with a few modifi-
cations. This system works but due to time constraints, it has not been very well
tested. It also has the disadvantage of not being optimized for server-side environ-
ment since it’s based on client-side applet code. Optimizations that can be done
include multi-threading, database connection pooling and caching.

The goals of the project have been achieved. There are now two web-based
methods for users to browse the D∅ calibration database.

22

9 Acknowledgement

I would like to thank my supervisor, Taka Yasuda, for his insights, assistance and
support throughout this project. I would also like to thank Geoff Savage who
helped me in the absence of my supervisor. Finally, I want thank Dianne Engram,
Dr. McCroy, Dr. Davenport and all the members of the SIST committe for the
opportunity to work at a great research institute - Fermilab.

23

References

[1] Sinan Si Alhir. UML in a Nutshell. O’Reilly & Associates, Inc., Sebastopol,
1998.

[2] Hans Bergsten.JavaServer Pages. O’Reilly & Associates, Inc., Sebastopol,
second edition, 2002.

[3] Chris Fehily.SQL: Visual Quickstart Guide. Peachpit, Berkeley, 2002.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design
Patterns Elements of Reusable Object Oriented Software. Addison-Wesley,
Massachusetts, 2000.

[5] Mark Grand.Patterns In Java: A Catalog of Reusable Design Patterns Illus-
trated With UML, Volume 1, volume 1. Wiley, Indianapolis, 2002.

[6] Jason Hunter and William Crawford.Java Servlet Programming. O’Reilly &
Associates, Inc., Sebastopol, second edition, 2001.

[7] Stephen Wong. Java resources: Design patterns.
http://exciton.cs.oberlin.edu/javaresources/.

24

APPENDIX

A Class Diagram of subclasses of ADrillState

Figure 15: Class Diagram for subclasses of ADrillState

25

B Class Diagram of subclasses of APlotState

Figure 16: Class Diagram for subclasses of APlotState

26

C Model-View-Controller Design Pattern

A program can often be divided into two parts:

• TheModel: the internals of the program where the actual processing takes
place.

• The View: the inputs and output of the program which the user interacts
with.

The model-view-controller design pattern decouples the model from the view en-
abling loose coupling and the ability to change one without affecting the other.Thus
each part should be able to operate totally independent of the other. The controller
is responsible for instantiating the two parts and the adaptor that connects them
together[7]. See Figure 17.

Figure 17: The model-view-controller

27

D The State Design Pattern

At any given time, an object can be described as being a state due to the value of
its properties. The particular values of the properties affect the objects behaviour.
By using the state design pattern, behaviours that depend on the state are simply
delegated to the state. The state design pattern encapsulates the state of an ob-
ject as discrete objects, each belonging to a separate subclass of an abstract state
class.[5] See Figure 17.

Figure 18: The Class Diagram of the State Design Pattern

28

E The Singleton Design Pattern

There are situations where only a single instance of an object is required. The
singleton design pattern makes the object responsible for creating and keeping
track of its single instance.[7] It provides a single global way for all clients to get
access to this instance.

See Figure 19.

Figure 19: Class Diagram of the Singleton Design Pattern

29

F The Command Design Pattern

Communication between two objects is often one object telling the second object
to perform a particular function. The command design pattern encapsulates the
particular request into an object so that the programmer can control their selec-
tion, sequencing , queue them, undo them, and otherwise manipulate them.[5] See
Figure 20.

Figure 20: Class Diagram of the Command Design Pattern

30

G The Template Design Pattern

The template design pattern is used to setup the outline of an algorithm. It enables
the programmer to separate variant behaviour from invariant behaviour.[4] See
Figure 21.

Figure 21: Class Diagram of the Template Design Pattern

31

H The Observer-Observable Design Pattern

This pattern defines a one-to-many relationship between objects so that when one
object(the observable) changes its state, all its dependents(the observers) are no-
tified and updated. The pattern allows the observers to dynamically register their
dependencies.[5] See Figure 22.

Figure 22: Class Diagram of the Observer-Observable Design Pattern

32

I The Null design Pattern

The null design pattern is used to indicate the absence of an object to delegate
an operation to.[5] A null object knows what to do every time an operation is
delegated to it: nothing.

33

	Introduction
	Design Considerations
	First Attempt - MISWEB
	MISWEB Implementation

	Problems with MISWEB
	Second Attempt - Java Applet
	Package calibDbView
	Class diagram of calibDbView package
	D0PE class
	ID0View interface
	D0PPanel class
	SearchPanel class
	TablePanel class
	D0ChartPanel class

	Package calibDbData
	Class diagram of calibDbData package
	OracleConnector class
	DataManager class
	D0TableModel class

	Package calibDbData.states
	Partial class diagram calibDbData.states package
	AState class
	ADrillState class
	APlotState class
	AChartState class
	CustomChartState class
	TopState class
	NullState class

	Package calibDbCommand
	Class Diagram of calibDbCommand package
	D0PACommand class
	AFrameCommand class
	SwitchComponent class
	D0Query class
	TopQuery class
	ChartQuery class

	Plotting Library - JFreeChart

	Problems with Java Applet
	Third Attempt - Java Server Pages
	Package beans
	DrillBean class
	TableBean class
	SearchBean class
	ChartBean class

	Package calibDbServlets
	SearchServlet class
	DrillServlet class
	DrillServlet class

	Package calibDbData.states
	IServletState interface

	Package calibDbData
	CalibDatasetProducer class

	Java Server Pages(JSP)

	Conclusion
	Acknowledgement
	References
	Appendix
	Class Diagram of subclasses of ADrillState
	Class Diagram of subclasses of APlotState
	Model-View-Controller Design Pattern
	The State Design Pattern
	The Singleton Design Pattern
	The Command Design Pattern
	The Template Design Pattern
	The Observer-Observable Design Pattern
	The Null design Pattern

