
 1

Defect, Problem, and Progress Tracking System 
 
 

John Biddle 
Physics/Electrical Engineering 

Harvard University 
Cambridge, MA 02138 

 
August 9, 2002 

 
Project Supervisor: Jerzy Nogiec



 2

TABLE OF CONTENTS 

ABSTRACT....................................................................................................................... 3 

INTRODUCTION............................................................................................................. 3 

ANALYSIS OF DPPTS INTERFACE V1.5.2................................................................ 4 

DESIGN OF DPPTS V2.0 ................................................................................................ 8 

IMPLEMENTATION OF V2.0 ..................................................................................... 10 

ViewPanel ................................................................................................................. 11 
MessagePanel ........................................................................................................... 12 
QueryPanel ............................................................................................................... 13 
DataTableModel ....................................................................................................... 16 
ActionPanel............................................................................................................... 17 
SearchFrame............................................................................................................. 19 
EnterDataFrame....................................................................................................... 21 
HistoryFrame............................................................................................................ 24 
DescribeFrame.......................................................................................................... 26 
Emailer...................................................................................................................... 27 
DbAccessor ............................................................................................................... 29 
DataManager ............................................................................................................ 30 

CONCLUSION ............................................................................................................... 36 

REFERENCES................................................................................................................ 40 

ACKNOWLEDGEMENTS ........................................................................................... 40 

APPENDIX A: APPLETFRAME CLASS ................................................................... 41 

APPENDIX B: EMAIL.CGI.......................................................................................... 43 



 3

Abstract 
 

The Defect, Problem and Progress Tracking System allows the Systems Development 
and Support Group at the Magnet Test Facility to keep track of reported problems or 
requests concerning the various systems administered there.  The applet that provides an 
interface for searching, creating and updating defect entries in the defect tracking 
database is in need of upgrade.  However the source code for the applet cannot be 
changed directly since it was generated by an outdated application builder.  Therefore 
upgrading the Defect, Problem, and Progress Tracking System applet requires 
implementing the interface from scratch. 
 

Introduction 
 
One of the main goals of the Systems Development and Support Group (SDSG) is to 
develop and maintain the various control, monitoring and data acquisition systems 
operated by the Magnet Test Facility (MTF) to test both conventional and super-
conducting accelerator magnets.  Efficient maintenance of these complex systems 
requires an understanding of the systems’ behaviors, knowledge of any problems 
encountered in the systems, and a mechanism to improve functionality if needed.  
However keeping track of all observed problems in this large collaborative environment 
would be a difficult task without a specialized system to support it.  To this end the 
Defect, Problem, and Progress Tracking System (DPPTS) was developed.  
 
DPPTS provides an interface that allows a user to browse through, create, and update 
problem or request entries for MTF systems.  Each problem entry should contain the 
following fields:  

Problem ID Used to uniquely identify a problem entry. 
Title 
Event Date 
Category:  The category that best describes the environment of the problem 

(i.e. network, peripherals, software, etc). 
System:  Where the problem occurred. 
Status:  Current status of the problem: open, closed, or deferred. 
Type:   Type of request in handling the problem/request. 
Severity:  Priority that should be given to the problem/request. 
Description: Description of the problem/request. 
Commentor:  Person addressing the problem (usually the user). 
Assigned To: Person assigned to handle the problem. 
Deadline:  Date the user expects the problem to be handled by.  

When a problem entry is created, the entry is added to a networked database, which may 
be accessed by remote nodes using DPPTS (see figure 1).  And with the information 
provided in this database, the SDSG can easily keep track of the creation and progress of 
various problems, requests, and action items for MTF system maintenance.  Thus DPPTS 
is a very powerful tool in monitoring system behavior and upkeep in MTF. 



 4

 
Figure 1: Basic Idea of DPPTS Interfacing with Remote Nodes 

Analysis of DPPTS Interface V1.5.2 
 
The interface provided by DPPTS version 1.5.2 is in the form of an applet on the SDSG 
website.  After initialization, the applet should have the appearance shown in figures 1.  
The applet is divided into 4 panels, each of which has its own individual tasks: the query 
panel (left), the view panel (right), the action panel (top), and the message panel 
(bottom).   
 
 



 5

 
Figure 2: Defect Tracking Applet 

 
 

The message panel is the simplest of the four panels.  Its job is simply to display the 
current status of any queries or transactions being sent to the database.  If an error has 
occurred during the process, the message panel will display an appropriate error message.  
Otherwise, it will display an appropriate “success” message. 
 
The query panel displays all of the search options used to build a defect query.  The 4 
combo boxes at the top of the panel allow a user to limit a search by category, system, 
request type, and/or person.  Below the combo boxes, there are 4 check boxes that allow 
a user to search for only open or closed problems, problems that have been made or 
updated in the last month, and/or problems with emergency status.  And below these 
boxes is a text field that allows a user to search for a problem with a specific problem id 
number.  When the user presses the submit button, all the selected parameters mentioned 
above are conjoined by AND’s to construct a query. 
 
When a user submits a query, the results are displayed as a table in the view panel.  Due 
to limited space, however, the table displays only the following fields: problem ID, date, 
system, status, category and title.  The table is somewhat interactive in that it allows the 
user to select a row corresponding with a particular problem entry and may either update 
the entry or view the history of this entry by pressing the appropriate buttons in the action 
panel. 



 6

 
Figure 3: New Entry Frame 

 
The action panel offers a few extra options.  The “New” and “Update” buttons on the 
action panel play similar roles.  When pressed, these buttons open new windows 
containing several text and combo box fields to enter and/or change data (see figure 2 and 
3).  The “History” button opens a new window containing a table of all updates made to 
the currently selected entry in the view panel (see figure 4).  When an entry is selected in 
the history table, the full description of the entry is displayed in the text area.  Note that 
the history frame also contains an “Update” button to allow the user to add another 
update.  The “Description” button in the history frame brings up another window, which 
displays all the entries in the history table in text format (see figure 5).  The “Email” 
button in this frame brings up a dialog window asking for the user’s e-mail address.  
Once the user enters his/her e-mail address, the text- formatted entries are emailed to the 
given address. 



 7

 
Figure 4: Update Entry Frame 

 
Figure 5: History Frame 

 



 8

 
Figure 6: Description Frame 

 
To recap DPPTS serves to meet three main goals:  effective database querying, problem 
entry updates, and new problem entry creation.  DPPTS version 1.5.2 meets all of these 
goals, but there is plenty of room for improvement.  Version 1.5.2’s querying options are 
quite limited and should be augmented in order to allow more effective database 
querying.  Some simple improvements to DPPTS would be to allow a keyword search 
field or to allow a user to search for entries on specific dates. 
 
Making such improvements version 1.5.2 should not be a far too difficult task if version 
1.5.2 was coded well.  However the code for version 1.5.2 was generated by a Java 
application builder, PowerJ, giving version 1.5.2 several undesirable characteristics.  One 
such characteristic is that the source code for version 1.5.2 is very obscure and 
unintuitive, making it very difficult to make changes to the code without using PowerJ.  
Another such characteristic is that the code is heavily dependent on PowerJ implemented 
classes.  This means that version 1.5.2 cannot run in a standard Java runtime environment 
without these PowerJ libraries present, and DPPTS cannot advance with the latest Java 
Runtime Environments unless PowerJ does.  But PowerJ, however, is no longer 
continued.  Thus in order to make improvements on DPPTS and take away its 
dependence on PowerJ, the code for the next version of DPPTS must be written from 
scratch. 
 

Design of DPPTS V2.0 
 
To begin the design phase of this project, a basic model of components needs to be 
established.  The framework of version 1.5.2 is used as a foundation for the newer 
version to aid in the design phase.  Thus the appearance of the newer version of DPPTS 
should be quite similar to that of version 1.5.2. 
 



 9

Recall that the DPPTS apple t consisted of 4 panels (action, message, query, and view 
panel) and 4 frames (new entry, update entry, history, and description frame).  For the 
newer version, another frame is added to the list to include advanced search options.  
Each of these components can be given its own Java class.  By using a class for each 
component, an individual component can be constructed independently from the rest, 
making it easy to make changes to one component without changing the others.  
However, the new entry and update entry frames behave largely in the same way, so 
these two frames can be constructed from the same class.  Also several of these classes 
will need to send and receive data to and from the database.  Therefore it would be useful 
to create classes that will handle the details of interacting with the database.  For this 
cause are the DbAccessor and the DataManager classes constructed.  The DbAccessor 
will be responsible for making the actual connection to the database, and the 
DataManager will be responsible for sending requests to the DbAccessor and parsing the 
results.  Thus the DataManager is the only class expected to have an instance of the 
DbAccessor class.  In this way, a class only needs an instance of the DataManager to 
send and receive data to and from the database.   
 
The panel classes are all subclasses of the Java swing component, JPanel, and each is 
largely independent of each other (see figure 5).   The QueryPanel constructs the queries 
to the database, the ViewPanel displays the result table, the ActionPanel instantiates the 
new, update, and history frames when appropriate, and the MessagePanel displays 
information on the status of any requests sent to the database.  However since the panels 
are constructed independently of each other, the panels must be able to communicate with 
each other to some degree.  Since the MessagePanel is basically concerned with the 
doings of the DataManager alone, the DataManager can be given a MessagePanel object 
to display messages to the panel.  The Action, View, and Query panels, however, need 
access to the same table object (an instance of the Java swing class JTable), so instead of 
creating the JTable in the view panel, the JTable is created outside the panels (in the 
Applet object containing these panels) and the constructors for each of these panels is 
given the same JTable object.  In this way, any changes made to the JTable by one panel 
can be seen by the other panels.  This is the level of communication needed for the applet 
to work properly. 
 
The frame classes are all subclasses of the Java swing component, JFrame (see figure 6).  
These classes are, for the most part, straightforward in implementation.  The subtleties, 
however, deal with how information is passed to the frames.  The history, description, 
and update entry frames require information about a particular entry.  Also the new and 
update entry frames are instances of the same class, EnterDataFrame, meaning that this 
class must be able to distinguish between the two cases.  To meet this end, each frame 
class has a constructor that requires information about the defect entry in question as an 
argument.  In this way, since the new defect entry frame does not require any 
information, the EnterDataFrame class can distinguish between the two by checking for a 
null argument to its constructor. 
 
Several classes will be using a DataManager object to access the database, however it 
will not be very efficient if there are several DataManager objects created to access the 



 10

database.  To this end the DataManager is made a singleton class.  This means that only 
one instance of the DataManager will exist during run time, and any object needing to use 
DataManager’s methods and members must obtain this instance.  This instance will be 
available to other objects through a static method in DataManager. 
 
Figure xx displays the various classes used in the design and their dependencies.   

 
Figure 7: Diagram of Class Dependencies in V2.0 

Implementation of V2.0  
 
The descriptions above should give a basic framework on how the components of the 
DPPTS applet should interact with each other.  Now it is appropriate to give more detail 
on how the applet is built. 
 

Defect 
 
The Defect class extends JApplet and is the parent of all the panel classes.  Its init() 
method, (whose function is similar to that of a constructor) simply needs to instantiate the 
panel classes and add them to the applet’s content pane in some sort of layout.  But recall 
that the panels need to communicate with each other by sharing the same instance of 
JTable, so the init() method also creates a JTable object and passes this object to the 



 11

view, query, and action panels’ constructors.  Also the singleton DataManager is given 
the instance of MessagePanel by calling on the DataManager’s static me thod, 
setMsgPanel().   
 
In most cases, the init() method is the only method that needs to be defined for an applet 
to function; however, the Defect class also defines 3 static methods.  The first, 
getProperties(), returns a Properties object (similar to a Hashtable) that contains the 
applet parameters “driver” and “dataSource.” The second, getBase(), returns the URL 
address of the applet.  The third is a main() method that allows the applet to be run as an 
application. 
 
The code for the Defect class is not very long and may be seen here: 

   
All of the functionality of the applet is hidden within the panel classes. 
 

ViewPanel 
 

The ViewPanel simply takes the JTable given to it in its constructor and displays it.  
Therefore the code for the ViewPanel is not very long either: 



 12

 
 

MessagePanel 
 

The MessagePanel’s purpose is to display an appropriate message in the applet 
concerning the current status of the DataManager.  The DataManager, however, is 
responsible for determining the appropriate message.  Thus the MessagePanel only needs 
to worry about taking a message and displaying it.  So the MessagePanel defines three 
methods.  The first, setMessage(), takes a string as the message to be displayed.  The 
second, setColor(), changes the color of the message to the specified Color.  And last, the 
paint() method displays the message on the panel.   
 
Again, the code for the MessagePanel is not very long and may be seen here: 



 13

   
 

QueryPanel 
 

The QueryPanel performs one of two actions.  When the “submit query” button is 
pressed, the QueryPanel constructs a query, sends it to the DataManager, retrieves the 
results, and changes the table model to reflect the given results.  Also, when the 
“advanced search” button is pressed, the QueryPanel makes a SearchFrame available.  So 
the QueryPanel needs to implement the ActionListener interface.  This interface allows 
the QueryPanel to listen for ActionEvents generated by pressing a button.  
 
There are several tasks that need to be accomplished in QueryPanel’s constructor.  The 
panel components (JButtons, JComboBoxes, JTextFields, etc) need to instantiated and 
added to the panel in an appropriate layout (in this case, a GridLayout).  The QueryPanel 
also needs to be added to the JButtons’ ActionListener lists using JButton’s method, 
addActionListener().  And lastly, the fields of the JComboBoxes need to be retrieved 
from the DataManager using the appropriate getXXX() methods.  The first two tasks are 
rather simple and do not take up much code, but the third task, however, is not so easy 
and generates a SecurityException.  Apparently the DataManager (well actually the 



 14

DbAccessor) cannot be accessed in the initialization thread of the panel (which would 
normally be the initialization thread of the Defect applet as well), so a solution to this 
problem is to retrieve the fields in another thread.  Thus the QueryPanel also implements 
the Runnable interface.  This interface allows the implementing class’s run() method to 
run in a separate thread through a Thread object.  So the QueryPanel defines a run() 
method that retrieves the necessary fields, and the constructor begins a new thread by 
creating a Thread object: 

 
 
When either of the buttons is pressed (e.g. “advanced search” or “submit query”), the 
actionPerformed() method is called with an ActionEvent object that tells the source of the 
event.  When the “advanced search” button is pressed, the panel checks to see if a 
SearchFrame has already been created.  If so, that frame is reset and set visible again, and 
if not, a new SearchFrame is created and set visible: 

 
 



 15

When the “submit query” button is pressed, two cases need to be distinguished.  The first 
case is when the user has entered a problem ID number to be searched.  This type of 
query is specific, and thus needs a different method from the DataManager (dm) than the 
basic query: 

 
Note the call to Integer’s static method, parseInt(), and the try/catch block surrounding it 
and the call to the DataManager.  This is simply to insure that the text entered in the 
JTextField is an integer.  If it is not, an error dialog is made.  Note also the synchronized 
block around the DataManager object.  This block is used to make sure the QueryPane l is 
the only object accessing the singleton DataManager at the time.  Also note that the code 
shown here is not completely correct.  The idQuery() method may throw an Exception 
and there is not an appropriate catch statement to handle it (see discussion on 
DataManager). 
 
In the case of a basic query, the QueryPanel needs to construct a query out of all the 
parameters set in the components of panel.  There are 7 query panel components 
(excluding the text field), and thus there are 7 possible parameters.  Instead of having a 
method in DataManager that takes 7 arguments, the QueryPanel creates a Hashtable and 
places the query parameters in the Hashtable with appropriate keys and passes this 
Hashtable to the DataManager: 



 16

 
 
The result returned by DataManager is a 2-element array of Vectors.  The first element 
Vector contains the column names of the result table.  The second element Vector is a 
Vector of Vectors (2-D Vector) containing the row data of the result table.  This data is 
converted to a TableModel by using the DataTableModel class (see discussion on 
DataTableModel).  So the table’s TableModel is set to the DataTableModel, changing the 
data shown by the table to that returned by the DataManager: 

   
The change made to the table here in the QueryPanel will be seen in the table displayed 
in the ViewPanel. 
 

DataTableModel 
 



 17

The DataTableModel class is a simple helper class that creates an object implementing 
the TableModel interface given table data in the form of Vectors: 

 
 
The class extends AbstractTableModel which is simply an abstract class implementing 
the TableModel interface.  Several of the methods necessary to implement the interface 
are defined in AbstractTableModel.  The only methods that need to be overridden are 
those defined in DataTableModel.  The constructor takes two Vectors as arguments.  The 
first is expected to hold all the row data as a 2-D Vector.  The second is expected to hold 
the column names.  The methods defined are straightforward and part of the interface. 
 

ActionPanel 
 

The ActionPanel has four buttons, each performing different actions.  The “new” button 
brings up a new entry frame.  The “update” button brings up an update entry frame.  The 
“history” button brings up a history frame.  And the “print” button converts the table data 
into a string and sends it to a printer.  Thus the ActionPanel implements the 
ActionListener interface.  The constructor for the ActionPanel is rather simple: 



 18

 
 
The case when the “new” button is pressed is the simplest of cases.  The ActionPanel 
simply creates a EnterDataFrame or resets one without any data: 

 
 
The “update” and “history” cases are slightly more complicated since data needs to be 
taken from the JTable.  First off, the index of the selected row in the table is found using 
JTable’s getSelectedRow() method.  Next, the problem ID number of the selected row is 
retrieved using getValueAt().  With the problem ID number, the desired data can be 
retrieved from the DataManager to be passed to the history and update frames (see 
discussion on DataManager): 



 19

 
 
In the print case, the ActionPanel takes the table model and extracts the data into a string 
using a couple of nested for loops.  Then this string is used to create a StringPrinter object 
that will send the string to a printer when its print() method is called (the StringPrinter 
class is messy and not very interesting, and thus not discussed in detail): 

 
 

SearchFrame 
 
The SearchFrame class behaves largely like the QueryPanel.  When the “submit” button 
is pressed, the SearchFrame sends a query to the DataManager and displays the results in 
the table.  Thus the SearchFrame must also be instantiated with the same JTable the 
panels communicate with as an argument. 



 20

 
The constructor for the SearchFrame is considerably longer than the QueryPanel since the 
SearchFrame components are arranged in a GridBagLayout – a complicated layout that is 
very flexible, but difficult to use.  There’s nothing special about its constructor except for 
the appearance of 3 JTextFields instead of one, and 7 JComboBoxes instead of 6.  In the 
SearchFrame the “persons” search in the basic query is divided into two searches: 
“assigned to” field search, and “commentor” field search.  The 3 JTextFields are used for 
more specific searching.  2 JTextFields are used for a date search: one for a start date, and 
the other for an end date.  The third JTextField is used for a case-sensitive keyword 
search. 
 
The SearchFrame also implements the ActionListener interface and listens for actions 
generated by three separate JButtons.  The “dismiss” button closes the frame (this action 
does not destroy the SearchFrame object).  The “reset” button calls the reset() method 
that resets all the search fields to their initial values.  And the “submit” button sends a 
query.  Looking at the actionPerformed() method, the “reset” and “dismiss” cases are 
short and simple: 

 
 
For the submit case, the SearchFrame needs to make sure the dates entered in the 
startDate and endDate JTextFields are a valid format.  To this end the Java class, 
SimpleDateFormat is used to create a format standard of the form “yyyy-MM-dd”: 

 



 21

The error checking for endDate is exactly the same format.  
 
Like in the QueryPanel, the query parameters are placed in a Hashtable that is sent to the 
DataManager and the results returned in the form of a 2-element Vector array.  Thus the 
code for sending the query and updating the table is similar to that in the QueryPanel: 

 
 

EnterDataFrame 
 

The EnterDataFrame class creates both new and update entry frames, and thus has two 
constructors.  The first constructor takes no arguments and creates a new entry frame.  
The second constructor takes a Hashtable object representing the data of the entry being 
updated and creates an update entry frame.  If a null object is given as the argument to the 
second constructor, then a new entry frame is created.  With this in mind, the first 
constructor can be implemented simply by calling the second one with a null argument: 



 22

 
Like the SearchFrame, the EnterDataFrame class uses a GridBagLayout, and thus has a 
lengthy constructor.  There are a few subtleties, however, that should be highlighted.  For 
one, the EnterDataFrame does not use JTextField or JTextArea for any of its text fields 
but rather TextField and TextArea, the corresponding Java AWT components.  These 
older text field classes are used instead of swing to allow cut-and-paste operations 
between the system and the Java applet.  This functionality is not allowed in swing text 
fields existing in an applet.  Also there are few parts of the constructor that distinguish 
between the new and update entry frames.  The first is when the title of the frame is set, 
and the next is when the TextField meant to hold the problem ID number is instantiated.  
For a new entry frame, the problem ID number is not yet known and thus is not needed.  
Also, the date field is set to the current time for each frame. 
 
The EnterDataFrame defines two reset() methods.  One method takes no arguments and 
the other takes a Hashtable object.  The first reset() method sets all of the data fields of 
the frame to their initial values.  The second method, which should only be called from an 
update entry frame, resets the data of the frame to that given by the argument (i.e. 
changes the entry being updated).  In each method the date is reset to the current time.  
With these methods, EnterDataFrames may be reused. 
 
The EnterDataFrame class implements the ActionListener interface to listen to 
ActionEvents generated by the JButtons: “dismiss,” “reset,” and “apply.”   The “dismiss” 
and “reset” cases are exactly the same as those in the SearchFrame.  The “apply” case 
takes the entered data and sends it to the DataManager to add to the database.  However, 
before the data can be sent, EnterDataFrame must check the data entered for correctness.  
In order to make a correct submission, the date must be in the correct format, a title and a 
description must be entered, and a valid category, system, and commentor must be 
selected.  If the data is correct, the field values are placed in a Hashtable and sent to the 
DataManager.  For a new entry frame, DataManager’s newEntry() method is called, and 
for an update frame, DataManager’s updateEntry() method is called: 



 23

 
 
After the database has been updated, an email is sent to the system coordinator and the 
person assigned to handle the defect.  This is done using Emailer’s static method, 
createEmail() (see Discussion on Emailer).  However, to send an email to the system 
coordinator, the coordinators name and email address need to be obtained.  This 
information is available in the database, and thus may be accessed through the 
DataManager’s getCoordinator() and getEmail() methods.  Once this information is 
obtained, a Hashtable is constructed to hold the email fields such as “to,” “from,” 
“subject,” etc.  Once all the necessary information is added to the Hashtable, the 
information is given as an argument to Emailer’s createEmail() method.  Also if someone 
is assigned to handle the problem, an email is sent to this person as well: 



 24

 
 

HistoryFrame 
 

The HistoryFrame is divided into three regions.  The top region contains the action 
buttons: “dismiss,” “description,” “update,” and “print.”  The center region contains a 
JTable displaying the history data.  And the bottom region is a text area containing the 
description of the currently selected entry in the JTable.   
 
When the selected row of a JTable changes, a ListSelectionEvent is generated and sent to 
all ListSelectionListeners.  Thus, in order to change the description field when the 
selection is changed, the HistoryFrame class implements the interface 
ListSelectionListener.  With this interface HistoryFrame must define the method 
valueChanged(), to handle ListSelectionEvents: 



 25

  
 
In the valueChanged() method, the frame retrieves the description from the TableModel 
and places it in the TextArea (note that this frame uses AWT TextArea also). 
 
The constructor for HistoryFrame takes a 2-element Vector array.  Like the Vector arrays 
mentioned before, the first element is expected to hold the column names of the history 
data and the second element is expected to hold the row data in a 2-D Vector.  With this 
array, the constructor creates a JTable and adds it to the frame’s content pane. 
 
Unlike the other frames mentioned, the HistoryFrame uses a BorderLayout and therefore, 
does not have a lengthy constructor. 
 
Like the other frames, the HistoryFrame also defines a reset() method.  This method takes 
a Vector array of the same structure that is expected in the constructor.  This array is used 
to change the TableModel of the currently displayed table: 

 
 
The HistoryFrame also implements that ActionListener interface to listen to 
ActionEvents generated by the JButtons.  The actionPerformed() method handles 4 cases.  
The “dismiss” case is the same as it is in the other frames.  The “update” case is the same 
as the “update” case in the ActionPanel and brings up an update entry frame.  In the 



 26

“description” case and the “print” case, the data from the JTable is used to construct a 
long string.  In the “description” case, this string is used to either create or reset a 
DescribeFrame, and in the “print” case, this string is sent to a StringPrinter to be printed: 

 
 

DescribeFrame 
 

The DescribeFrame simply displays history data in text form.  The constructor for 
DescribeFrame takes two strings: the first being the data to be displayed in the TextArea 
and the second being the problem id of the history data.  The data text is used to create a 
TextArea that takes up most of the frame’s visible area, and the problem id is used to 
identify the data.  A FlowLayout is used to arrange the frame components. 
 
The DescribeFrame implements the ActionListener interface to listen to the JButtons 
“dismiss” and “email.”  When the “email” button is pressed, the actionPerformed() 
method uses a JOptionPane to prompt the user to enter his/her email address.  Once the 
email address is obtained, an email is constructed and sent to the given address using the 
Emailer class:  



 27

 
 

Emailer 
The Emailer class is a helper class used to send emails.  The default constructor for 
Emailer is defined private so that the class may not be instantiated.  The class only 
defines two methods, each of which is static.  The first, createEmail(), takes a Hashtable 
and creates an email based on the data in the Hashtable.  The second, send(), is a helper 
function for createEmail() and is declared private.  The send() method simply takes a 
String and sends it to an OutputStream in an appropriate manner.   
 
To send an email, the java.net package is used and a Socket object connecting to the 
server, smtp.fnal.gov, is created.  With this Socket object, an OutputStream may be 
obtained to send data to the SMTP server: 

 
 
Using a Socket object to connect to a server is just fine when Defect is running as an 
application, but when Defect is running as an applet, a SecurityException is thrown.  This 
is because all applets run under a SecurityManager that imposes certain restrictions on 
the capabilities of an applet.  One of these restrictions is that an applet cannot 
communicate with any servers other than the server the applet resides.  The Defect applet 
does not reside on the smtp.fnal.gov server, and therefore cannot communicate with it 
directly.   
 
There are two possible solutions around this obstacle.  One is to install a mailer daemon 
(like sendmail) on the server with the Defect applet (this solution may be explored later).  
The other solution is to use Common Gateway Interface (CGI).  CGI provides an 
interface that allows hosts to execute applications on a server.  Since these applications 



 28

run on the server, they are not as restricted as applets.  Thus Emailer can execute a CGI 
program residing on the same server as the Defect applet to send the requested email.  
This is the solution that is currently used in the DescribeFrame. 
 
The program used to send the email is a script written in Perl (see Appendix for script 
code).  To communicate with the script, Emailer creates an URLConnection object with 
the URL address of the script.  Then a string is assembled containing the fields “to,” 
“from,” “subject,” and “body.”  Each field is associated with a value in the string using 
the characters “::” (i.e. “to::johndoe@fnal.gov”) and delimited using “&&” (i.e. 
“to::<you>&&from::<me>”).  Afterwards, an OutputStream is obtained from the 
connection, and the string is printed on the stream.  The script will not run until an 
InputStream is also obtained, but this must be done after the string is sent to the 
OutputStream.  When an InputStream is requested from the connection, an Exception is 
very likely to be thrown (this is most likely because of wrong configurations on the 
server), but this does not mean the script did not run properly.  So this Exception is 
trapped in a try/catch block surrounding the request of an InputStream: 

 
 
The problem with CGI is that is does not allow efficient error handling in the applet.  So 
CGI will be used only when necessary (when Defect runs as an applet), and use the 
send() method whenever possible (when Defect runs as an application).  If Defect runs as 
an application, the AppletFrame class will be instantiated (see Appendix for AppletFrame 
class).  Thus Emailer chooses whether or not to use CGI depending on whether or not an 
AppletFrame object exists: 

 
 



 29

DbAccessor 
 

The DbAccessor establishes the connections to the Defect Tracking database.  A 
DbAccessor is used by the DataManager to communicate with the database.  In order to 
setup communication with the database, the DbAccessor must first determine the data-
source of the database and the appropriate driver to access it.  These may be determined 
by Defect’s static method, getProperties().  The driver is loaded by calling the static 
method, Class.forName(), which loads a class.  If Defect is run as an application or the 
driver and dataSource parameters are not defined for the applet, getProperties() will 
return an empty Properties object.  In that case DbAccessor uses the Postgres driver as 
default: 

 
 
DbAccessor defines 5 methods: connect(), disconnect(), query(), update(), and 
getDriverName().  The getDriverName() method simply returns the name of the driver 
being used.  The connect() and disconnect() methods opens and closes connections to the 
database.  The connect() method is expected to be called before query() or update() is 
used, and disconnect() is expected to be called afterwards.  To make a Connection, the 
DriverManger class is invoked to call on the Driver loaded in the constructor.  Once a 
Connection is made, a Statement is created from the connection to allow the DbAccessor 
to execute SQL statements.  To disconnect, the Statement and Connection objects are 
closed: 



 30

 
Note that these methods may throw Exceptions. 
 
The query() method takes a SQL query statement and executes it using the Driver 
Statement created in the connect() method.  The result of the query comes in the form of 
a ResultSet object (defined in the java.sql package), which is returned by query(): 

 
 
The update() method is similar to the query() method.  The update() method takes a SQL 
update statement and executes the update using the Driver statement.  No value is 
returned: 

 
 
Like connect() and disconnect(), update() and query() may generate Exceptions that must 
be caught at some point. 
 

DataManager 
 

The DataManager constructs the SQL statements depending on which methods are being 
called, and sends them to the DbAccessor.  If the DbAccessor returns a ResultSet, the 
results are processed and returned in an appropriate format. 
 
DataManager is a singleton class and, therefore, has only one instance.  The constructor 
is defined as private and the class provides a static method that returns the instance of the 
class: 



 31

 
 
The Defect database consists of several tables and fields.  Figure 6 shows a schematic of 
the tables, their fields, and how the tables are related.  Apparently the tables are not in the 
simplest form, and thus long and complicated SQL statements must be constructed to 
perform queries and update data.  Also these SQL statements may be driver dependent, 
making it necessary for the DataManger to call on DbAccessor’s getDriverName() 
method.  The actual syntax and construction of these SQL statements are not very 
interesting and will not be discussed in length. 

 
Figure 8: Defect Tracking Database. 

 
DataManager defines 4 methods that returns field names in the database: getCategories(), 
getSystems(), getPersons(), and getRequests().  These methods return a Vector containing 



 32

the desired fields.  Once these methods retrieve the fields, the fields are stored so that 
they may be returned in the future without using the DbAccessor for a second time: 

 
Here a connection is made to the DbAccessor and its query() method is called.  This 
method returns a ResultSet, which is processed to produce a Vector in while loop.  Once 
the Vector is made, the connection is closed and the Vector is returned.   
 
Note that the getSystems() method catches Exceptions from the DbAccessor only to 
throw them back again.  Exceptions are caught here for two reasons.  The first is to make 
sure the DbAccessor’s disconnect() method is called at some point, and the second is to 
display appropriate error messages with the MessagePanel.  Since the DataManager is not 
fully equipped to handle the Exceptions completely, the caught Exception is thrown again 
so that it can be handled by the upper level components.  This Exception handling will be 
seen throughout the DataManager. 
 
The query() method takes a Hashtable holding the query parameters and returns a 2-
element Vector array in the format discussed previously.  The query() method is defined 
to handle any query parameter, except a problem id parameter, that may be given by a 
Defect component and constructs a SQL statement by concatenating the parameters: 



 33

 
Since the query() method attempts to handle any possible combination of parameters that 
may be given by a Defect component, it is possible to construct a query that will never 
return any results.  Therefore, it is the responsibility of thecaller to give a combination of 
parameters that makes sense. 
 
The idQuery() method takes a string representing a problem ID number and makes a 
problem ID query.  This method is defined outside of the query() method because this 
search only requires one parameter and the SQL statement is of a different structure: 

 
 
The getHistory() method is similar to the idQuery() method.  It also takes a string 
representing a problem ID number and returns a Vector array of data.  The only 
difference is the structure of the SQL statement generated. 
 
The query(), getHistory(), and idQuery() methods call the protected method runQuery().  
This method takes an SQL statement, sends it to the DbAccessor using its own query() 
method, and takes the returned ResultSet and processes it to return a 2-element Vector 
array representing the table data: 



 34

 
Lines 81-87 retrieve the column names and place them in the first element of the Vector 
array.  Lines 88-97 retrieve the row data and place it in a 2-D Vector.  This Vector is 
placed in the second element of the array, which is returned in line 100. 
 
The last query method defined in DataManager, getEntryData() takes a string 
representing a problem ID number and returns a Hashtable representing entry data.  Since 
its return type is a Hashtable, getEntryData() cannot use runQuery() and must do most of 
the work on its own.  The major difference between this method and runQuery()’s 
handling of the ResultSet returned by DbAccessor is that getEntryData() expects only one 
row to exist in the ResultSet and this row data is placed in a Hashtable rather than a 
vector: 



 35

 
 
The newEntry() and updateEntry( ) methods take a Hashtable representing entry data.  
These methods send updates to the DbAccessor, and thus calls on its update() method.  
The only difference between these two methods is the construction of the SQL statement 
that is given to update().  The newEntry() method needs to construct 2 SQL statements, 
and updateEntry() needs to construct 3 statements.  More than one statement is needed 
since only one table in the database may be updated at a time.  Here is some sample code 
that resembles newEntry(): 

 



 36

In the case of newEntry(), the database must be queried in order to find the largest 
problem ID number that currently exists (Lines 143-145).  Then the new entry is added to 
the database with max problem ID plus 1 as its problem ID number.  This number is 
returned once the database is updated.  The updateEntry() method does not have to worry 
about this, and it simply creates the SQL and calls update().  
 

Conclusion 
 

The appearance of the final product, DPPTS Applet version 2.0, can be seen in figures 7-
12.  Note that the appearance of the final product is not that different from that of its 
predecessor, version 1.5.2.  This should be no surprise since the two versions have, for 
the most part, the same specifications. 
 

 
Figure 9: Defect Applet Version 2.0 

 



 37

 
Figure 10: Update Entry Frame 

 

 
Figure 11: New Entry Frame 

 



 38

 
Figure 12: History Frame 

 

 
Figure 13: Description Frame 

 



 39

 
Figure 14: Advanced Search Frame 

Version 2.0 may use one of two drivers to access the database: the Sybase driver or the 
Postgres driver.  The classes that provide the functionality of these drivers are not 
standard classes in Java, however.  Thus in order to run version 2.0, these special classes 
must be included somewhere.  Currently the Postgres classes reside in a jar (Java 
Archive) file called “postgres,” and the Sysbase classes reside in “jconnect2.” In order to 
run version 2.0 as an application, one of these files must be included in the classpath 
depending on which driver is being used.  As an applet the jar file needs to be added to 
the applet classes by setting the “ARCHIVE” parameter of the “<APPLET>” tag equal to 
the desired jar file. 
 
Version 2.0 was implemented using Java Software Development Kit version 1.3.1, and 
thus requires Java Runtime Environment version 1.3 or better to run properly.  So in 
order to run Defect as an application, a fairly recent JRE needs to be installed on the 
console Defect is meant to run on, and in order to run Defect as an applet, the user’s 
browser must posses a fairly recent virtual machine for Defect to run properly.  But sadly, 
any version of Internet Explorer and Netscape (the most common browsers) below 
version 6.0 uses fairly old virtual machines that are not compatible with many of the 
updates in JSDK version 1.3.  Since these browser versions are the most common, the 
HTML file containing the “<APPLET>” tag for Defect is converted with the Java 
program HTMLConverter, which forces the browser loading the converted HTML to use 
the Java plug- in to run the applet.  This guarantees that the applet will be run in a fairly 
recent runtime environment. 
 
DPPTS Applet version 2.0 currently resides at the address http://mtfpc22.fnal.gov/Defect. 
 



 40

References 
 
Cornell, Gary and Cay S. Horstmann.  Core Java 1.2, Volume 1-Fundamentals.   

California: Sun Microsystems Press, 1999. 
 

“Sending E-mail from Perl for NT.”  <https://secure.unisite.net/html/sendmailnt.html>.  

 

Acknowledgements 
 
 I would like to thank the SIST committee members for allowing me this work 
opportunity at Fermilab.  Furthermore, I would also like to thank my supervisor, Jerzy 
Nogiec, for his guidance and support throughout my internship and give my gratitude to 
the SDSG team, Kelly Trombly-Freytag, Dana Walbridge, Ping Wang, Gene Desavouret, 
Pennie Hall, and Frank Burzynski for all their help and support in finishing my project.  
And finally, I want to give a special thanks to all the SIST interns who have not only 
made this summer an enjoyable one, but have also enriched my life and left me with an 
experience I’ll never forget. 



 41

Appendix A: AppletFrame class 
 
/** 
 * AppletFrame 
 * Source: Core Java Volume 1 - Fundamentals 
 *  Example 10-12, p. 580-581 
 * @version 1.21 31 July 2002 
 * @author Cay Horstmann 
 */ 
 
import java.awt.*; 
import java.awt.event.*; 
import java.applet.*; 
import java.net.*; 
import java.util.*; 
import javax.swing.*; 
import java.lang.*; 
import java.io.*; 
 
public class AppletFrame extends JFrame implements AppletStub, AppletContext{  
 private static boolean instantiated = false; 
  
 public AppletFrame(Applet a, int x, int y){ 
  instantiated = true;   
  setTitle(a.getClass().getName()); 
  setSize(x, y); 
  addWindowListener(new WindowAdapter() 
  {  public void windowClosing(WindowEvent e) 
    {  System.exit(0); 
    } 
  } ); 
  Container contentPane = getContentPane(); 
  contentPane.add(a); 
  a.setStub(this); 
  a.init(); 
  show(); 
  a.start(); 
 } 
    
   /** 
    * Added by John Biddle 
    * @returns True if instance of AppletFrame exists. 
    */ 
 public static boolean isInstantiated() { 
     return instantiated; 



 42

 } 
   // AppletStub methods 
 public boolean isActive() { return true; } 
 public URL getDocumentBase() { return null; } 
 public URL getCodeBase() { return null; } 
 public String getParameter(String name) { return ""; } 
 public AppletContext getAppletContext() { return this; } 
 public void appletResize(int width, int height) {} 
  
  
 // AppletContext methods 
 public AudioClip getAudioClip(URL url) { return null; } 
 public Image getImage(URL url) { return null; } 
 public Applet getApplet(String name) { return null; } 
 public Enumeration getApplets() { return null; } 
 public void showDocument(URL url) {} 
 public void showDocument(URL url, String target) {} 
 public void showStatus(String status) {} 
 public InputStream getStream(String key)  { return null;} 
 public Iterator getStreamKeys() {return null;} 
 public void setStream(String key, InputStream stream) {} 
     
} 



 43

Appendix B: email.cgi 
 
#!/usr/bin/perl 
# sends email over smtp 
# Requires the fields: "to," from," "subject," and "body." 
# Fields must be associated with corresponding values with 
# the characters "::", and the field/value associations must 
# be delimited by "&&" 
# source: "Sending E-mail from Perl for NT", 
# https://secure.unisite.net/html/sendmailnt.html  
use Net::SMTP; 
$line = <STDIN>; 
$temp = $line; 
while ($temp) { 
 $temp = <STDIN>; 
 $line = $line.$temp; 
} 
@params = split '&&', $line, 4; 
for ($i = 0; $i < 4; $i += 1) { 
 @list = split '::', @params[$i], 2; 
 if (@list[0] eq "to") { 
  $to = @list[1]; 
 } elsif (@list[0] eq "from") { 
  $from = @list[1]; 
 } elsif (@list[0] eq "subject") { 
  $subject = @list[1]; 
 } elsif (@list[0] eq "body") { 
  $content = @list[1] 
 } 
} 
$smtp = Net::SMTP->new('smtp.fnal.gov');  # connect to an SMTP server 
$smtp->mail($from);        # use the sender's address 
here 
$smtp->to($to);            # recipient's address 
$smtp->data();                       # Start the mail 
 
# Send the header. 
$smtp->datasend("From: ".$from."\n"); 
$smtp->datasend("To: ".$to."\n"); 
$smtp->datasend("Subject: ".$subject."\n"); 
$smtp->datasend("\n"); 
 
# Send the body. 
$smtp->datasend($content); 
$smtp->dataend();                   # Finish sending the mail 
$smtp->quit;                        # Close the SMTP connection 
 
print 'success'; 
 
 


