Defect, Problem, and Progress Tracking System

John Biddle
Physicg/Electrical Engineering
Harvard University
Cambridge, MA 02138

August 9, 2002

Project Supervisor: Jerzy Nogiec

TABLE OF CONTENTS

A B ST R A T e et e e e e e ettt e —aeaaeeeaaaaaaans 3
INTRODUGCTION . .ottt e e e ettt et e e eeeeaaseeereesaessssaasssereeeeesssasaasereeeeessssaaassens 3
ANALYSISOF DPPTSINTERFACE V152, . et 4
DESIGN OF DPP T SV 2.0 ..ottt e e et e e e e e e e e e e e e e e e e e e e 8
IMPLEMENTATION OF V2.0 oo e eee e e e e e e e e aeeeeee e e e e e e eaaeennens 10
VWP ANED ...t e et e ettt e e e e e e e e e e e eeeeeeeaeeennneeaeeeeaans 11
MESSAGEPANE!eiiiie e 12
QUENYPANEL ... bbb enes 13
D12z U= 1] [=\Y, oo (< TSP 16
ACHONPANEL ...ttt e e e e e et e e e e e e e e e e e e e e e e e e aeeenneeaeans 17
SN CRFTAIME. ..o et eeeeeeeeeeneeeeees 19
| (S D L= 1= = 10 0 < TR 21
[TS 0 Y = T =P 24
(DS o] o< =100 = T 26
0 02T L=, (T 27
DIDACCESSOL ..ottt e e e e e e e e e ettt eee e e e e e e e eeeeeeeeesaaanneeeeeeeeeeeaaannnneeeeens 29
D F 1= LAY =TT L USRS 30
CONCLUSION et e ettt e e e e e e e e e e et eeeeeeees e e ereeeeeeesseeaateaeeeees 36
REFERENCES.ottt e e e ettt e e e e e e e e s e e e e e e eeeeesaeneeeeaeeeeaans 40
ACKNOWLEDGEMENTS .o e et e e e e e e e e e e e e aaeeeaaas 40
APPENDIX A: APPLETFRAME CLASS ... eee e 41
APPENDIX B: EM AL .CGI et e e e et eeeteeaeaeeasaaesseeeeessssssssssseeneesessssses 43

Abstract

The Defect, Problem and Progress Tracking System allows the Systems Devel opment
and Support Group at the Magnet Test Facility to keep track of reported problems or
requests concerning the various systems administered there. The applet that provides an
interface for searching, creating and updating defect entries in the defect tracking
database is in need of upgrade. However the source code for the applet cannot be
changed directly since it was generated by an outdated application builder. Therefore
upgrading the Defect, Problem, and Progress Tracking System applet requires
implementing the interface from scratch.

Introduction

One of the main goals of the Systems Development and Support Group (SDSG) isto
develop and maintain the various control, monitoring and data acquisition systems
operated by the Magnet Test Facility (MTF) to test both conventional and super-
conducting accelerator magnets. Efficient maintenance of these complex systems
reguires an understanding of the systems’ behaviors, knowledge of any problems
encountered in the systems, and a mechanism to improve functionality if needed.
However keeping track of all observed problems in this large collaborative environment
would be a difficult task without a specialized system to support it. To this end the
Defect, Problem, and Progress Tracking System (DPPTS) was devel oped.

DPPTS provides an interface that allows a user to browse through, create, and update
problem or request entries for MTF systems. Each problem entry should contain the
following fields:

Problem ID Used to uniquely identify a problem entry.

Title

Event Date

Category: The category that best describes the environment of the problem

(i.e. network, peripherals, software, etc).

System: Where the problem occurred.

Status: Current status of the problem: open, closed, or deferred.
Type: Type of request in handling the problem/request.
Severity: Priority that should be given to the problem/request.

Description: Description of the problem/request.

Commentor: Person addressing the problem (usually the user).

Assigned To: Person assigned to handle the problem.

Deadline: Date the user expects the problem to be handled by.
When a problem entry is created, the entry is added to a networked database, which may
be accessed by remote nodes using DPPTS (see figure 1). And with the information
provided in this database, the SDSG can easily keep track of the creation and progress of
various problems, requests, and action items for MTF system maintenance. Thus DPPTS
isavery powerful tool in monitoring system behavior and upkeep in MTF.

Remote
MNode

DPPTS

Remote
Mode

LPPTS

Femote
Mode

LPPTS

Defect
Databass

Remote
Mode

LPPTS

Figurel: Basic Idea of DPPTS Interfacing with Remote Nodes

Analysis of DPPTS Interface V1.5.2

The interface provided by DPPTS version 1.5.2 isin the form of an applet on the SDSG
website. After initialization, the applet should have the appearance shown in figures 1.
The applet is divided into 4 panels, each of which has its own individual tasks: the query
panel (left), the view panel (right), the action panel (top), and the message panel

(bottom).

Defect, Problem, & Frogress Tracking Vi.5.2 Update New History

Search Options [V Date [Systemn [Statuz | Cateoory [Tite |
| All Systems - | 237 1930-01-04 14:26:00.0 | PC Support | closed Configuration Defective date due to 2K, problem :
136 19570702 10:55:00.0 |DMCS clozed Inhouze Software Hardwsare test =
| All Categories - | 133 1938-01-07 10:1%:00.0 |DMCS cloged In-house Software glow scan
138 19980207 11:1300.0 |DMCS deferred Inhouze Software Video camera
|All Request Types || || 160 1935.03031343000 DMCS |closed | Ivhouse Software | Dtabase model
| All Persons - | 167 1998-03-04 13:44:000 | DMCS clozed In-house Software Requirements specification
171 1933-05-07 10.57:00.0 |DMCS cloged In-housge Software Pratotype Positioning System
[Open 135 1998-0716 10:27:00.0 | DMLCS closed Inhouse Software Main menu
[Closed 170 19358-08-01 14:01:00.0 |DMCS defered In-houze Software Refined data model.
169 1993-08-10 13.54:000 |DMCS cloged In-houge Software Prototype of GUI
[] Last Month 131 1995-09-23 10:03:00.0 | DMCS closed Irvhouse Software Fiermate File Systerm [RFS)
[JE mergency 134 1998-09-2310:22:00.0 |DMCS closed In-houze Software CCS
132 19381009 10:14:00.0 | DMCS clozed Inhouze Software Seribe
pioblemID: | | 225 1933-10-26 10:41:00.0 | PC Support | clozed Mebwork 131.225 47 128 subnet installation
144 1938-11-2011:30:00.0 | DMCS cloged In-house Software Docurentation of calculations
| Submit Query | 137 1998-12-23 1102000 |DMCS cloged In-housge Software Calibrations entry application |
148 1999.01 A4 NSREANN [FhS s I 1ee Snfhaars Project armanizatinn: deselonment 4

|\v"iBW results of vour auem

Figure2: Defect Tracking Applet

The message panel is the simplest of the four panels. Itsjob issimply to display the
current status of any queries or transactions being sent to the database. If an error has
occurred during the process, the message panel will display an appropriate error message.
Otherwise, it will display an appropriate “success’ message.

The query panel displays all of the search options used to build a defect query. The 4
combo boxes at the top of the panel allow a user to limit a search by category, system,
request type, and/or person. Below the combo boxes, there are 4 check boxes that allow
auser to search for only open or closed problems, problems that have been made or
updated in the last month, and/or problems with emergency status. And below these
boxesis atext field that allows a user to search for a problem with a specific problem id
number. When the user presses the submit button, all the selected parameters mentioned
above are conjoined by AND’ sto construct a query.

When a user submits a query, the results are displayed as a table in the view panel. Due
to limited space, however, the table displays only the following fields: problem ID, date,
system, dtatus, category and title. The table is somewhat interactive in that it allows the
user to select arow corresponding with a particular problem entry and may either update
the entry or view the history of this entry by pressing the appropriate buttons in the action
panel.

[inserting new problem =l0ix

| Dismiss | Reset | Apply |
Event Date: Categornies:
[2002-7-31 10:47 | | Unknown bt |
Title:
[l |
System: Status: Commentor:
| CHISOX - | | Open - | | Unknown Commentor - |
Type: Severity: AssignedT o:
| defect hd | | Low - | | Mot Assigned hd |

Description:

|Warning: Applet Window

Figure3: New Entry Frame

The action panel offers afew extraoptions. The “New” and “Update” buttons on the
action panel play similar roles. When pressed, these buttons open new windows
containing severa text and combo box fields to enter and/or change data (see figure 2 and
3). The“History” button opens a new window containing a table of all updates made to
the currently selected entry in the view panel (see figure 4). When an entry is selected in
the history table, the full description of the entry is displayed in the text area. Note that
the history frame also contains an “Update”’ button to allow the user to add another
update. The “Description” button in the history frame brings up another window, which
displays all the entries in the history table in text format (see figure 5). The “Email”
button in this frame brings up a dialog window asking for the user’s e-mail address.
Once the user enters hisTher e-mail address, the text-formatted entries are emailed to the
given address.

i Updating Original Problem =[Ol =l

| Dismiss | Reset | Apply |
Date: 1D Category:
[2002.7-31 10:50 | = | Configuration - |
System: Status: Commentor:
IF'C Supoork | Clozed - | | Unknown Commentor - |
Tvpe: Severity: AssianedT o:
| defect | |Low - | Ping Wang - |

Description:

|Warning: Applet Window

Figure4: Update Entry Frame
~lofx|

| Descripti... | || Dismiss |

10 [ate Comnentar Statu Severity Tupe AzzianedT o Dezcription
237 1980-01-04 14:26:0... | Dana "W albridge open o defect | Jerzy Mogiec The clock iz alzo zlow. Jerzy will deter...
237 2000-01-04 14:15:0... | Dana ‘W albridge open o defect | Mot Aszigned Jerzy's laptop has a 2K problem with b
237 2001-03-27 15:16:0... | Ping 'Wana clozed [l defect Firg wana The clock waz adjusted. Office 97 wasz ...
Description
The clock iz also slow. Jerzy will determine what course of action to take.
The initial commentor waz Dana Walbridge, who did enter hiz name as the commentor, and was observed by three withesses of sound mind. 1F's not peat
clear why the commentor wasz not included in the first entry for this problem.

Warning: Applet Window

Figure5: History Frame

i List of all Descriptions o [m] |

| Email | Dismiss |
Description:
10 237 B
Title: Defective date due to 2K, problem on Jerzy's laptop i
[ate: 1930-01-04 14:26:00.0
Categorny: System Software i
Severity: I 1

Commentor: Dana ‘walbridge
Bazigned: Jerzy Mogiec

Drezcription:
The clock iz alzo slow. Jerzy will determine what course of action to take.

The initial commentor was Dana 'WWalbridge, who did enter his name az the commentor, and was

ohzerved by three withezses of sound mind. It's ot yeat clear why the commentar was nat included__|
e bl Fieok musbeas For g, (3]

arning: Applet Window

Figure6: Description Frame

To recap DPPTS serves to meet three main goals. effective database querying, problem
entry updates, and new problem entry creation. DPPTS version 1.5.2 meets all of these
goals, but there is plenty of room for improvement. Version 1.5.2's querying options are
quite limited and should be augmented in order to allow more effective database
guerying. Some simple improvements to DPPTS would be to alow a keyword search
field or to allow a user to search for entries on specific dates.

Making such improvements version 1.5.2 should not be a far too difficult task if version
1.5.2 was coded well. However the code for version 1.5.2 was generated by a Java
application builder, PowerJ, giving version 1.5.2 several undesirable characteristics. One
such characteristic is that the source code for version 1.5.2 is very obscure and
unintuitive, making it very difficult to make changes to the code without using PowerJ.
Another such characteristic is that the code is heavily dependent on PowerJ implemented
classes. This means that version 1.5.2 cannot run in a standard Java runtime environment
without these PowerJ libraries present, and DPPTS cannot advance with the latest Java
Runtime Environments unless PowerJ does. But PowerJ, however, is no longer
continued. Thusin order to make improvements on DPPTS and take away its
dependence on PowerJ, the code for the next version of DPPTS must be written from
scratch.

Design of DPPTS V2.0

To begin the design phase of this project, a basic model of components needs to be
established. The framework of version 1.5.2 is used as a foundation for the newer
version to aid in the design phase. Thus the appearance of the newer version of DPPTS
should be quite similar to that of version 1.5.2.

Recdll that the DPPTS applet consisted of 4 panels (action, message, query, and view
panel) and 4 frames (new entry, update entry, history, and description frame). For the
newer version, another frame is added to the list to include advanced search options.
Each of these component s can be given its own Java class. By using a class for each
component, an individual component can be constructed independently from the ret,
making it easy to make changes to one component without changing the others.
However, the new entry and update entry frames behave largely in the same way, so
these two frames can be constructed from the same class. Also severa of these classes
will need to send and receive data to and from the database. Therefore it would be useful
to create classes that will handle the details of interacting with the database. For this
cause are the DbA ccessor and the DataM anager classes constructed. The DbA ccessor
will be responsible for making the actual connection to the database, and the
DataManager will be responsible for sending requests to the DbA ccessor and parsing the
results. Thus the DataManager is the only class expected to have an instance of the
DbAccessor class. In thisway, a class only needs an instance of the DataM anager to
send and receive data to and from the database.

The panel classes are all subclasses of the Java swing component, JPanel, and each is
largely independent of each other (seefigure 5). The QueryPanel constructs the queries
to the database, the ViewPanel displays the result table, the ActionPanel instantiates the
new, update, and history frames when appropriate, and the MessagePanel displays
information on the status of any requests sent to the database. However since the panels
are constructed independently of each other, the panels must be able to communicate with
each other to some degree. Since the MessagePanel is basically concerned with the
doings of the DataM anager alone, the DataM anager can be given a MessagePanel object
to display messages to the panel. The Action, View, and Query panels, however, need
access to the same table object (an instance of the Java swing class JTable), so instead of
creating the JTable in the view panel, the JTable is created outside the panels (in the
Applet object containing these panels) and the constructors for each of these panelsis
given the same JTable object. In thisway, any changes made to the JTable by one panel
can be seen by the other panels. Thisisthe level of communication needed for the applet
to work properly.

The frame classes are all subclasses of the Java swing component, JFrame (see figure 6).
These classes are, for the most part, straightforward in implementation. The subtleties,
however, deal with how information is passed to the frames. The history, description,
and update entry frames require information about a particular entry. Also the new and
update entry frames are instances of the same class, EnterDataFrame, meaning that this
class must be able to distinguish between the two cases. To meet this end, each frame
class has a constructor that requires information about the defect entry in question as an
argument. In thisway, since the new defect entry frame does not require any

information, the EnterDataFrame class can distinguish between the two by checking for a
null argument to its constructor.

Several classes will be using a DataManager object to access the database, however it
will not be very efficient if there are severa DataManager objects created to access the

database. To this end the DataManager is made a singleton class. This means that only
one instance of the DataManager will exist during run time, and any object needing to use
DataM anager’ s methods and members must obtain this instance. This instance will be
available to other objects through a gatic method in DataM anager.

Figure xx displays the various classes used in the design and their dependencies.

k AppletFrame
Chom debuk)

ActionPanel
o k)

HistoryFrame TBnmnane

(hom debuk)
\u 0.1 l,. Trame
1 jrewnrame
L1, ApaseEme
Erter DataFrame
(hom debuk)

0.1 dercrbsframe
s

DescribeFrame
(om deluk)

StringPrinter
(hom de bt

D=taTablefodel
[om e buk)

Ermvailer
[hom bk}

T Disfact

7

[hom debuk)

T

tessagePansl QueryPanel

{hom de buk)

mpaie ||:|fp\
LB |

|

|

|

u..1\mam|

“iewPanel
[om debuk) (o de by

SearchFrame
CIhom o bl
|

1.1 t:l11|I
0.7, ekl 7.1 o
D=taManager

[hom e buk) 0.1

_hEmEice

0.1|da

DbAccessar
[hom de Bk

Figure7: Diagram of Class Dependenciesin V2.0

Implementation of V2.0

The descriptions above should give a basic framework on how the components of the
DPPTS applet should interact with each other. Now it is appropriate to give more detail

on how the applet is built.

Defect

The Defect class extends JApplet and is the parent of all the panel classes. Itsinit()
method, (whose function is similar to that of a constructor) simply needs to instantiate the
panel classes and add them to the applet’s content pane in some sort of layout. But recall
that the panels need to communicate with each other by sharing the same instance of
JTable, so the init() method also creates a JTable object and passes this object to the

10

view, query, and action panels’ constructors. Also the singleton DataManager is given
the instance of MessagePanel by calling on the DataManager’ s static method,
setM sgPanel ().

In most cases, the init() method is the only method that needs to be defined for an applet
to function; however, the Defect class aso defines 3 static methods. The first,
getProperties(), returns a Properties object (similar to a Hashtable) that contains the
applet parameters “driver” and “dataSource.” The second, getBase(), returns the URL
address of the applet. The third isamain() method that allows the applet to be run as an
application.

The code for the Defect class is not very long and may be seen here:
23 public cla==s Defect extends JApplet {

24 private static Properties props = new Properties():
25 private =tatic URL baze:

26

27 public woid init() {

28 base = getCodeBase():;

24 props.put("driver" . getParameter("driver"1):;

an props.put{ "dataSource". getParameter{"dataSource")):
31 JTable table = new JTable():

a2 Mes=zagePanel mpanel = new MessagePaneli();

33 DataManager . =etM=gPanel (mpanesl)

34 CuervPanel gpanel = new OQuervPanel{table):;

a5 ViewPanel wvpanel = new ViewPanel({table):;

36 ActionPanel apanel = new ActionPaneli{table):;

a7 getContentPane() .setLayout (new BorderLavout()):
g getContentPane() . add{mpanel. BorderlLayout SOUTH):
34 getContentPane() .add{apanel. BorderLayout HORTH):
410 getContentPane() .add{gpanel. BorderlLayvout . WEST):
i1 getContentPane() . add{wvpanel. BorderLawvout CEHTER):
42 ¥

43

44 public =tatic Froperties getProperties() {

45 return props;

ip ¥

47

44 public static void main(String [] args) {

49 new AppletFramei(new Defect(), 720, 375):

50 ¥

51

5z public s=tatic UREL getBases() {

53 return base:

54

55}

All of the functionality of the applet is hidden within the panel classes.
ViewPanel

The ViewPand simply takes the JTable given to it in its constructor and displays it.
Therefore the code for the ViewPane is not very long either:

11

14 public cla=s=s ViewPanel extend=s JPanel{

15 private JTable table;

16 private JScrollPane j=p:

17

13 <% Creates a WiewPanel with the giwven table.
14 # @param table The table to be displaved.
20 *.

21 puiblic WiewPanel(JTable table) {

22 thi=.table = table:

23 zetLayvout (new BorderLavout()):

24 ij=p = new JScrollPaneltable):

25 add{j=sp. BorderLavout CEHTER):

26 T

27

28

M essagePanel

The MessagePanel’ s purpose is to display an appropriate message in the applet
concerning the current status of the DataManager. The DataManager, however, is
responsible for determining the appropriate message. Thus the MessagePanel only needs
to worry about taking a message and displaying it. So the MessagePanel defines three
methods. The first, setMessage(), takes a string as the message to be displayed. The
second, setColor(), changes the color of the message to the specified Color. And last, the
paint() method displays the message on the panel.

Again, the code for the MessagePanel is not very long and may be seen here:

12

13 public zlas=s MessagePanel extends JPanel {

14 private String m=g;

15 private Color color;

16

17 B =

13 #* Createz a MessagePanel .

19 *.

210 public MessagePanel() {

21 setPreferredSize(new Dinension(720, 157317
22 n=g = "Mes=szage Panesl";

23 color = Color.black;

24 zetBackground{Color . green) ;

25 T

26

27 SR

28 #* Changes the drawn nessage.

29 * Aparamn =tr the new nessage.

an *

31 public void setlessage(String =tr) {

32 n=g = =tr;

ad repaint ()

34 T

35 SR

26 #* Draws the Panel.

a7 * @param g Graphics object that renders panel.
e *

39 public woid paint (Graphics g) {

410 g.=etColor(Color. lightGray);

41 g.fillRect(0.0,.get5ize() . wvidth, getSizei) height):
42 g.zetColor{color):

43 g.drawvString(m=g, 0. 12):

44 T

45 I

46 * Stz the color of the nessages.

47 * @param color nev color for the nes=zage.
48 *.

49 miblic woid setColor{Color color) {

g0 thi=z. color = color:

51 repaint ()

g2

53}

QueryPanel

The QueryPanel performs one of two actions. When the “submit query” button is
pressed, the QueryPanel constructs a query, sends it to the DataM anager, retrieves the
results, and changes the table model to reflect the given results. Also, when the
“advanced search” button is pressed, the QueryPanel makes a SearchFrame available. So
the QueryPanel needs to implement the ActionListener interface. This interface allows
the QueryPanel to listen for ActionEvents generated by pressing a button.

There are several tasks that need to be accomplished in QueryPanel’ s constructor. The
panel components (JButtons, JComboBoxes, JTextFields, etc) need to instantiated and
added to the panel in an appropriate layout (in this case, a GridLayout). The QueryPanel
also needs to be added to the JButtons' ActionListener lists using JButton’s method,
addActionListener(). And lastly, the fields of the JComboBoxes need to be retrieved
from the DataManager using the appropriate getXXX() methods. The first two tasks are
rather simple and do not take up much code, but the third task, however, is not so easy
and generates a SecurityException. Apparently the DataManager (well actualy the

13

DbA ccessor) cannot be accessed in the initialization thread of the panel (which would
normally be the initialization thread of the Defect applet as well), so a solution to this
problem isto retrieve the fields in another thread. Thus the QueryPanel also implements
the Runnable interface. This interface allows the implementing class's run() method to
run in a separate thread through a Thread object. So the QueryPanel defines a run()
method that retrieves the necessary fields, and the constructor begins a new thread by
creating a Thread object:

2 public class QuervPanel eztends JPanel inplements Actionlistener.

4 Funnable {
5 <+ Data Members
B private JTable table:
7 private DataMangar dm = DataManager . getlnstance():
a
9 public QuervPanel{JTable table) {
10 thi=. table = table:
11
1z <% instantiate conponents
13
14
15 ..
16 add Actionlistener ... =~
17
1a Ssretrieve fields
149 new Threadithis) . start():
20 ¥
21
22 ##For Funnable interface
23 public woid runi() {
24 < retrieve fields
25 S dm . ogetEEEO)
26 ¥
27
24a <+For Actionlistener interface
24 public woid actionPerformed(ActiconEwvent =) {
30 #+Handle Action Events=
al
a2}

When either of the buttons is pressed (e.g. “advanced search” or “submit query”), the
actionPerformed() method is called with an ActionEvent object that tells the source of the
event. When the “advanced search” button is pressed, the panel checksto seeif a
SearchFrame has already been created. If so, that frame is reset and set visible again, and
if not, a new SearchFrame is created and set visible:

a0 private SearchFrame advSearch:

31 private JButton adwvanced;

32

o piblic woid actionPerformed(icticonEvent =) {
34 Shdwanced Search

35 if (e.getSource() == advanced) {

36 S«Display a SsarchFramns

a7 1f {adwvSearch == null) {

38 advSearch = new SearchFrame(table);
39 T else {

40 advSearch . reset():

41

42 advSearch.setVisible(trus) ;

43 T

44 T

14

When the “submit query” button is pressed, two cases need to be distinguished. The first
case is when the user has entered a problem ID number to be searched. This type of
query is specific, and thus needs a different method from the DataManager (dm) than the

basic query:

31 private JButton advanced., submit

32 private JTextField problD;

a3

34 public woid actionPerformed{ActionEvent =) {

35 Sohdwanced Search

36 if (2. .getSource() == advanced) {

a7 Sohdvwanced Search

33 } else if (2. .getSource() == submit) {

39 if (problID. getText().lengthi{) > 0) {

40 SeBError Checl

41 try |

42 Integer . parselnt {problD. getTe=xt{));
43 synchronized(dmn) {

44 rezult = dn. idOuerv(problD . getText()):
45

46 + catch (HumberFormatEzception ne) {

47 JOptionFPane showMeszageDialoginull,
43 "Problem ID mu=st be numeric.". "Error".
419 JOptionFPane . ERRORE_MESSAGED ;

&0 return:

51 T

52 T

53 T

54 T

Note the call to Integer’s static method, parselnt(), and the try/catch block surrounding it
and the call to the DataManager. Thisis smply to insure that the text entered in the
JTextField isaninteger. If it isnot, an error dialog is made. Note also the synchronized
block around the DataM anager object. Thisblock is used to make sure the QueryPanel is
the only object accessing the singleton DataManager at the time. Also note that the code
shown here is not completely correct. The idQuery() method may throw an Exception
and there is not an appropriate catch statement to handle it (see discussion on

DataM anager).

In the case of a basic query, the QueryPanel needs to construct a query out of all the
parameters set in the components of panel. There are 7 query panel components
(excluding the text field), and thus there are 7 possible parameters. Irstead of having a
method in DataManager that takes 7 arguments, the QueryPanel creates a Hashtable and
places the query parameters in the Hashtable with appropriate keys and passes this
Hashtable to the DataM anager:

15

28
29
a0
a1
32
a3
34
a5
36
37
38
B
40
41
42
43
44
45
45
47
43
49
50
51
52

public wvoid actionPerformed{ictionEvent e) {
Vector result[]:

if {e.getSource() == advanced) {
Sohdwanced Search
T elze if (2. .getSource() == =zubmit) {

if (problD getText(). lengthi{) » 0) {
SsProblem ID Ouery

T else {
Ha=zhtable =ubmi==sion = new Hashtable():
1f {=zvstemn.getSelectedInde=x() 1= 0) {

subnizsion. put("Svysten” .
syzten. getSelectedltend 1) ;

b
if (categories. getSelectedIndex() = 03 {
submnission. put{ "Category"”,
categories. getSelectedlten())

¥

SE zto ®S
synchronized(dn) {

rezult = dn.guervisubmni=z=sion)
I

The result returned by DataManager is a 2-element array of Vectors. Thefirst element
Vector contains the column names of the result table. The second element Vector isa
Vector of Vectors (2-D Vector) containing the row data of the result table. Thisdatais
converted to a TableModel by using the DataTableModel class (see discussion on
DataTableModel). So the table's TableModel is set to the DataTableModel, changing the
data shown by the table to that returned by the DataManager:

26
27
28
29
an
Bl
32
BE
a4
s
36
a7
ag
B
40
41
42
43
44
45
4k
47

private JComboBox svstem, categories:
private JTextField problD;
private JButton =s=ubmit, advanced:

rublic woid actionPerformed{ActionEwvent =) {
Vector result[]:

1f {e.getSource() == advanced) {
Sohdvanced Search
¥ elze if (e.getSource() == submit) {
1f {problD.getTe=xt(). length{) > 0} {
L
result = idQuerv({problD.getText{));
} else {
LA
result = dm.guery({submis=sion);
b

I
DataTableModel tm =
new DataTableModel (result[1]. result[0]):
table.setdodel{tn);
table. repainti):

¥

The change made to the table here in the QueryPanel will be seen in the table displayed
in the ViewPand.

DataT ableM odel

16

The DataTableModel class is a simple helper class that creates an object implementing

the TableModel interface given table datain the form of Vectors:

15 public zla=s== DataTableModel extend=s AbstractTableModel {
1le ~<sData Hembers

17 private Vector data:

13 private Vector headers:

19

20 public DataTableModel (Vector data. Vector headers) {
21 thiz.data = data:

22 thi=. headers = headers:

23 T

24

25 public int getColunnCount() {

26 return headers. =izel);

27 T

248

29 public int getEowCount() {

30 return data . size():

31 T

32

33 public String getColumnHanel{int col) {

34 return (String) header=. elementht({col):

35 T

36

a7 paiblic Class getColumnClass({int col) {

38 return String.class;

3% T

40

41 public boolean i=CellEditablel(int row., int col) {

42 return false:

43 T

44

45 public Object getValushAt(int row. int col) {

46 return {((Vector) data.elementiti{row)). elementit{col):
47 T

44

49 public woid =etValusAt(Object walue, int row., int col) {
5o [(Vector) data.elementhAt{row)) . =etElementht(valus, col);
L1 fireTableRowsUpdated{row, row) ;

52

53}

The class extends AbstractTableModel which is simply an abstract class implementing
the TableModel interface. Several of the methods necessary to implement the interface
are defined in AbstractTableModel. The only methods that need to be overridden are
those defined in DataTableModel. The constructor takes two Vectors as arguments. The
first is expected to hold al the row data as a 2-D Vector. The second is expected to hold
the column names. The methods defined are straightforward and part of the interface.

ActionPandl

The ActionPanel has four buttons, each performing different actions. The “new” button
brings up a new entry frame. The “update” button brings up an update entry frame. The
“history” button brings up a history frame. And the “print” button converts the table data
into a string and sends it to a printer. Thus the ActionPanel implements the
ActionListener interface. The constructor for the ActionPanel is rather simple:

17

public class ActionPanel extend= JPanel implements Actionlistener {
s+Data Members
private JButton newb;
private JButton update:
private JButton history:
private JButton print;
private JTable table;
private DataManager dm = DatalManager . getlnstance():

3

4

5

B

7

a

9

10

11

12 miblic ActionPanel (JTable table) {

1z thi=s. table = table:

14 newh = new JButton("New"):

15 update = new JButton("Tpdate"):

16 history = new JButton({"Historv"):

17 print = new JButton("Frint");

13 add(new JLabel{"Defect., Problem. & Progress Tracking V2 .0"1):
119 newb . addictionlistener({thi=s)

20 update. addActionlistener(thi=s);

21 history.addictionlistener(thi=s);

22 print addActionlistener(thi=s):

23
24
25
26
27
28

add(newh) ;

add{update)

add{history):

add{print):

h

29 public woid actionPerformed{ActionEvent =) {
a0 s<hction Events
a1
32

The case when the “new” button is pressed is the smplest of cases. The ActionPanel
simply creates a EnterDataFrame or resets one without any data:

29 private EnterDataFrame newframe:

an

31 public woid actionPerformed{ActionEvent e) {
3z if (2.getSource() == newb) {

33 if {newframe == null) {

34 newframe = new EnterDataFrame():
a5 Fel== {

36 newframe. reset():

37 T

38 newvframe. =etVisiblel trus);

39 T

40 T

The “update” and “history” cases are dlightly more complicated since data needs to be
taken from the JTable. First off, the index of the selected row in the table is found using
JTable's getSelectedRow() method. Next, the problem ID number of the selected row is
retrieved using getVaueAt(). With the problem ID number, the desired data can be
retrieved from the DataManager to be passed to the history and update frames (see
discussion on DataM anager):

18

a5
26
87
28
29
20
91
92
23
94
95
96
97
98
99
100
101
102
103
104
105
106
107

private EnterDataFrame updateframe;

public woid actionPerformediActionEvent 34
1f {e.getSource() == newb) {

“+«Hew Entrv Frames

} el== if (2.getSource() == updatel {

<Gt =zelected Entrv's ID number

int selectedFow = table.getSelectedRow():;
s«retrieve ID number as= String

Ha=shtable data = dm.getEntrvData(id):

if (data == null) {

return;
I
if (updateframse == null) {

updateframe = new EnterDataFramei{data):
} el== {

updateframe. resset(data):

¥

updateframe. =etVisible{trus):

} el=e 1f {(e.getSource() == historvy) {

Sozimilar to update case

In the print case, the ActionPanel takes the table model and extracts the data into a string
using a couple of nested for loops. Then this string is used to create a StringPrinter object
that will send the string to a printer when its print() method is called (the StringPrinter
class is messy and not very interesting, and thus not discussed in detail):

a1
32
33
34
35
36
a7
38
39
40
41
42
43
44
4%
4k
47
43
49
50
51
52
53
E4
55

piblic woid actionPerformedictionEvent =) {

1f {e.getSource() == newb) {
ssnewframne
T else 1f {e.getSource() == update) {

Ssupdate frame

} el=e if (e.getSource() == historwv) {

s~hiztory frame

} el=e if (2.getSource() == print) {

if (table.getFowCount{) <= 0) {
return;

T
TableModel tm = table.getlodel():
int colCount = tn. getColumnCount():
int rowCount = tn. getBowCount():
StringBuffer doc = new StringBuffer();
for (int 1 = 0; 1 ¢ rowCount: i++31 {
for (int j = 0; 37 ¢ colCount: Jj++3) {
doc.append{tm.getColunnHans{3) + ": ")
doc.append(tm. getValusht (i, J) + "~n"):
h
T
StringPrinter =p = new StringPrinteri{doc. toString()):
sp.print{);

SearchFrame

The SearchFrame class behaves largely like the QueryPanel. When the * submit” button
is pressed, the SearchFrame sends a query to the DataManager and displays the resultsin
the table. Thus the SearchFrame must aso be instantiated with the same JTable the
panels communicate with as an argument.

19

The constructor for the SearchFrame is considerably longer than the QueryPanel since the
SearchFrame components are arranged in a GridBagL ayout — a complicated layout that is
very flexible, but difficult to use. There's nothing special about its constructor except for
the appearance of 3 JTextFields instead of one, and 7 JComboBoxes instead of 6. In the
SearchFrame the “persons’ search in the basic query is divided into two searches:
“assigned to” field search, and “commentor” field search. The 3 JTextFields are used for
more specific searching. 2 JTextFields are used for a date search: one for a start date, and
the other for an end date. The third JTextField is used for a case-sensitive keyword
search.

The SearchFrame a so implements the ActionListener interface and listens for actions
generated by three separate JButtons. The “dismiss’ button closes the frame (this action
does not destroy the SearchFrame object). The “reset” button calls the reset() method
that resets al the search fields to their initial values. And the “submit” button sends a
query. Looking at the actionPerformed() method, the “reset” and “dismiss’ cases are
short and simple:

Ch private JButton dismiss, reset. =ubmit:
57

La public wvoid actionPerformed{ActionEvent =) {
59 if (e.getSource() == disni=ss) {

0 z=tViszible(fal=s)

61 T else 1f {(e.getSource() == reset) {
[reset(]);

B3 T else 1f {(e.getSource() == submit) {
[Sszubmit query

G5 T

(1] T

For the submit case, the SearchFrame needs to meke sure the dates entered in the
startDate and endDate JTextFields are avaid format. To this end the Java class,
SimpleDateFormat is used to create a format standard of the form “yyyy-MM-dd”:

L7 private SimplelateFormat dateFormat =

La new SimplelateFormat(" vyyy—MH-dd") ;

59 private JButton dismis=s, reset., submit;

&0 private JTextField startDate. endDate:

Bl

b2 public woid actionPerformed{ActionEvent =) {

63 if (2. .getSource() == dis=ni=s) {

64 ==tVi=zible(fal==);

65 T el=e 1f {(e.getSource() == reset) {

b& reset(]);

67 T els=s if (2. .getSource() == =zubmit) {

63 S<zubmit guervy

69 Ha=htable submi==sion = new Hashtable():
70 if {=startDate.getTexzt().length{) > 0) {
71 String date = startDate. getText()
T2 if (dateFormat. parse(date) == null) {
73 S<pop—up window "ERROR"

74 return;

75 F el== {

76 submis=sion.put{"StartDate", date):
77 T

7a T

79 S

an T

a1 T

20

The error checking for endDate is exactly the same format.

Like in the QueryPanel, the query parameters are placed in a Hashtable that is sent to the
DataManager and the results returned in the form of a 2-element Vector array. Thus the
code for sending the query and updating the table is similar to that in the QueryPand!:

52 public woid actionPerformedictionEvent =) {
L3 1f {e.getSource() == dismni=s=s) {
G4 z=tVisible(fal=es);
55 } el=s if (2.getSource() == resst) {
Lk reset():
57 } el=e if (2. .getSource() == =zubmit) {
ca s<oCheck dates
a9 Has=htable =ubmizsion = new Hashtable():
60 <<add parameter= to Hashtable
6l
[Vector result[]:
63 Ssretrieve results
b4 try {
65 synchronized(dm) {
bE result = dm.guervi{subnis=sion);
b7 T
[if (result == null) {
69 return;
70 T
71
T2 DataTableModel tm =
73 new DataTableModel (result[1l]. result[0]):
74 table. setModel{tm);
75 table. repaint]:
T } catch (Exception ie) {
77 A
7a T
79 T
an T
Enter DataFrame

The EnterDataFrame class creates both new and update entry frames, and thus has two
constructors. The first constructor takes no arguments and creates a new entry frame.
The second constructor takes a Hashtable object representing the data of the entry being
updated and creates an update entry frame. If anull object is given as the argument to the
second congtructor, then a new entry frame is created. With thisin mind, the first
constructor can be implemented simply by calling the second one with a null argument:

21

4 public cla==s EnterDataFrame extend=s JFrame implements Actionlistener{
5 sData Hembers

£

7 public EnterDataFrame({Hashtable data) {

a <1t (data == null) {

9 < Hew Entrvy Frame

10 Sk glee

11 <« lIlpdate Entrv Frames

12 A5

13 T

14

15 public EnterDataFrame() {

16 thi=inull);

17 T

18

19 piblic woid actionPerformed(icticonEvent =) {
20 Sohction

21 T

22

23

Like the SearchFrame, the EnterDataFrame class uses a GridBagL ayout, and thus has a
lengthy constructor. There are a few subtleties, however, that should be highlighted. For
one, the EnterDataFrame does not use JTextField or JTextAreafor any of its text fields
but rather TextField and TextArea, the corresponding Java AWT components. These
older text field classes are used instead of swing to allow cut-and-paste operations
between the system and the Java applet. This functionality is not alowed in swing text
fields existing in an applet. Also there are few parts of the constructor that distinguish
between the new and update entry frames. The first is when the title of the frame is set,
and the next is when the TextField meant to hold the problem ID number is instantiated.
For a new entry frame, the problem ID number is not yet known and thus is not needed.
Also, the date field is set to the current time for each frame.

The EnterDataFrame defines two reset() methods. One method takes no arguments and
the other takes a Hashtable object. The first reset() method sets all of the data fields of
the frame to their initial values. The second method, which should only be called from an
update entry frame, resets the data of the frame to that given by the argument (i.e.
changes the entry being updated). In each method the date is reset to the current time.
With these methods, EnterDataFrames may be reused.

The EnterDataFrame class implements the ActionListener interface to listen to
ActionEvents generated by the JButtons: “dismiss,” “reset,” and “apply.” The “dismiss’
and “reset” cases are exactly the same as those in the SearchFrame. The “apply” case
takes the entered data and sends it to the DataM anager to add to the database. However,
before the data can be sent, EnterDataFrame must check the data entered for correctness.
In order to make a correct submission, the date must be in the correct format, atitle and a
description must be entered, and a valid category, system, and commentor must be
selected. If the datais correct, the field values are placed in a Hashtable and sent to the
DataManager. For a new entry frame, DataManager’ s newEntry() method is called, and
for an update frame, DataM anager’ s updateEntry() method is called:

22

19 private JButton dismiss, reset, apply;

20

21 rublic woid actionPerformed{ActionEvent =) {

22 1f {e.getSource() == dismi=s=s) {

23 zs=tVi=zible(fal=se);

24 T else 1f {(e.getSource() == reset) {

25 reset();

26 P el=ze if (e.getSource() == applv) {

27 <<check for correctness

28 Haszhtable submission;

29 Ssplace fisld= in hastable

an try {

31 synchronized{dmn] 4

32 if i{data == null) {

33 dm.newvEntrv(subni=zsion)

34 T el=se {

S dm. updateEntry{submnis=sion);
36 T

Ei T

38 JOptionPane . shovlMesszagelialog("Databa=ze Updated!"):
39 zs=tVi=zible(fal=se);

41 } catch {(Exception i) {

i1 JOoptionFPane showlesszagelialogi "Update Failed! ")
42

43 T

44 T

45 T

After the database has been updated, an email is sent to the system coordinator and the
person assigned to handle the defect. Thisis done using Emailer’s static method,
createEmail() (see Discussion on Emailer). However, to send an email to the system
coordinator, the coordinators name and email address need to be obtained. This
information is available in the database, and thus may be accessed through the

DataM anager’ s getCoordinator() and getEmail() methods. Once this information is
obtained, a Hashtable is constructed to hold the email fields such as “to,” “from,”
“subject,” etc. Once al the necessary information is added to the Hashtable, the
information is given as an argument to Emailer’s createEmail() method. Also if someone
is assigned to handle the problem, an emall is sent to this person as well:

23

50 public wvoid actionPerformed{ictionEvent) {

51 if (2.getSource() == applv) {
52 trv |
53 S<z=end guery
54 } catch (Exception iel {
55 SSError. return
1] return:
57 ¥
5a try {
54 String coordinator = dm.getCoordinator(
=41 (Stringl=sy=stens.getSelectedlten))
61 String coordEmail = dm.getEmail{coordinator);
A2 Ha=shtable email = new Hashtable():
A3 email put("FromHams". "Defect Tracking"):
B4 emall . put{"Fromiddres=s". "DefectTracking@inal .gow"):
65 email put("SendToHamn=s" ., coordinator):
1 emall . put{"SendToiddress". coordEmail);
) Ssoreate body
A email put{"Bodv" . bodwv):
B9 Emailer createEmail{email);
Eall if [{as=zigned.getSelectedIndex() = 0) {
71 String aszsighedEmail = dm.getEmailf
72 (String)as=signed.getSelectedIltem) :
73 email put("SendToHamns" .
74 (String)assigned.getSelectedIten)
75 emnail put("SendToEnail"” . assignedEmail):
Th Emailer createEmail{email):
77 ¥
78 } catch (Exception iel {
79 S<grror. could not send emails
a0 ¥
a1 ¥
a2 1
HistoryFrame

The HistoryFrame is divided into three regions. The top region contains the action
buttons: “dismiss,” “description,” “update,” and “print.” The center region contains a
JTable displaying the history data. And the bottom region is a text area containing the
description of the currently selected entry in the JTable.

When the selected row of a JTable changes, a ListSelectionEvent is generated and sent to
all ListSelectionListeners. Thus, in order to change the description field when the
selection is changed, the HistoryFrame class implements the interface
ListSelectionListener. With this interface HistoryFrame must define the method
valueChanged(), to handle ListSelectionEvents:

24

public class HistorvyFrame extend=s JFrame inplements
Li=tSelectionli=tenery{
<«Data Hemnbers
private JTable history:
private JButton dismi==s., update. describe. print:
private TexthArea description:
private DataManager dm = DataManager . getlnstance():

4

5

3

7

a

g

o

11

L2 public HistoryFrame (Vector[] data) {
L3 sscreate table

14 history = new JTable():
L5 #+~add ListSelectionlistener
l6& Li=tSelectioniodel l=m = historvy.getSelectionModel();
L7 l=zm.addLi=tSelectionlistener{thi=)
18 description = newv TexthAreal):
19 description. =etEditable(fal=s);
20 <<add table and text area
21 add{history);

22 addi{description’:
23

24

25

26

27

28

29

an

i1

12

13

34

¥

public woid walueChanged{li=stSelectionEvent e) {
2 int selectedRow = historv. getSelectedRow()
if (=electedFow < 0] {
return;

T
Tablelodel tm = history.getlodel():
int ool = history. getColumn('Description”) . getModelIndex():
String =tr = (String) tm.getValueht(=slectedBow, col);
description.setText (=str):
description.setCaretPozition(0);

15

i6 |}

In the valueChanged() method, the frame retrieves the description from the TableModel
and places it in the TextArea (note that this frame uses AWT TextArea aso).

The constructor for HistoryFrame takes a 2-element Vector array. Like the Vector arrays
mentioned before, the first element is expected to hold the column names of the history
data and the second element is expected to hold the row datain a 2-D Vector. With this
array, the constructor creates a JTable and adds it to the frame's content pane.

Unlike the other frames mentioned, the HistoryFrame uses a BorderLayout and therefore,
does not have a lengthy constructor.

Like the other frames, the HistoryFrame also defines a reset() method. This method takes
a Vector array of the same structure that is expected in the constructor. This array is used
to change the TableModel of the currently displayed table:

25 public woid reset(Vector[] data) {

26 history.s=etModel (new DataTableModeli{data[l]. data[0])):
27 description.=etText(""]);

24a T

The HistoryFrame also implements that ActionListener interface to listen to
ActionEvents generated by the JButtons. The actionPerformed() method handles 4 cases.
The “dismiss’ caseisthe same as it isin the other frames. The “update’ case is the same
as the “update”’ case in the ActionPanel and brings up an update entry frame. In the

25

“description” case and the “print” case, the data from the JTable is used to construct a
long string. In the “description” case, this string is used to either create or reset a
DescribeFrame, and in the “print” case, this string is sent to a StringPrinter to be printed:

42 private JButton dismiss. update, describe. print:

43 private DescribeFrame describefrans;

44

45 miblic woid actionPerformed(ictionEvent =) {

4k if (e .getSource() == describe || e.getSource() == print) {
47 TableModel tm = historvy.getModel():

43 int colCount = tn. getColumnCount();

419 int rowCount = tm.getRowCount();

50 StringBuffer doc = new StringBufier():

51 for (int 1 = 0; 1 ¢ rowCount; i++) {

L2 for {int 3 = 0: 37 ¢ colCount; J++) {

58 doc. append(tm. getColunnHans(3) + " ~t");

54 doc.append{tmn.getValusdt{i, 7)) + "~n");

55 T

1 s] T

= 1f {e.getSource() == describe) {

£a int collndex =

59 hiztory.getColunnModel () . getColunnInde=("ID")
=1 String i1d = (String) history.getValuedt{0, collndex):
Bl if (describeframe == null) {

29 describefrans =

63 new DescribeFrame(doc. toString(), 1d):

fd T else {

65 describeframe. reset (doc. toString(), 1d);

BE T

67 describefranse . =etVisible(tru=)

B3 return:

) el {

70 StringPrinter sp = newv StringPrinteridoc.toString)):
71 =p.print();

7

73 T

74 T

DescribeFrame

The DescribeFrame simply displays history data in text form. The constructor for
DescribeFrame takes two strings: the first being the data to be displayed in the TextArea
and the second being the problem id of the history data. The data text is used to create a
TextArea that takes up most of the frame's visible area, and the problem id is used to
identify the data. A FlowLayout is used to arrange the frame components.

The DescribeFrame implements the ActionListener interface to listen to the JButtons
“dismiss’ and “email.” When the “email” button is pressed, the actionPerformed()
method uses a JOptionPane to prompt the user to enter hisher email address. Once the
email address is obtained, an email is constructed and sent to the given address using the
Emailer class:

26

g5 public woid actionPerformed{ActionEvent =) {

g6 if (2. .getSource() == dis=ni=s) {
a7 ==tVi=zible(fal==);
a8 T el=e 1f {(e.getSource() == emnail) {
29 trv {
a0 Ssget address from user
91 String address = JOptionPane. showlnputDialog(
92 "Pleaze enter yvour e-mnail addres="):
93 Hashtable submission = new Hashtablel);
94 subnis=sion. put{ "Fromiddres=s".
95 "IefectTracking@®fnal gov");
96 submisz=sion. put{ "FromHamnse", "Defect Traclking")};
97 subnission. put{ "SendToNans" . address);
98 subnission. put{ "SendTobAddres=s" ., address);
99 S~ 2to *®
oo Emailer. createEmail (submis=sion);
ki } catch (Exception ie) {
02 SSerror occured
03 T
04 T
.05 T
Emailer

The Emailer class is a helper class used to serd emails. The default constructor for
Emailer is defined private so that the class may not be instantiated. The class only
defines two methods, each of which is static. The first, createEmail(), takes a Hashtable
and creates an email based on the data in the Hashtable. The second, send(), is a helper
function for createEmail() and is declared private. The send() method simply takes a
String and sends it to an OutputStream in an appropriate manner.

To send an email, the java.net package is used and a Socket object connecting to the
server, smtp.fnal.gov, is created. With this Socket object, an OutputStream may be
obtained to send data to the SMTP server:

14 miblic s=tatic woid createEmail (Hashtable data)

15 throws Exception

16

17 Soclet hostSoclet = new Soclket({"=mntp.fnal. govw", 253:
13 CutputStrean out = hostSocket getOutputStrean():

139 Semendi{ont, emaild;

20 ho=ztSocket .clo=e();

21 T

Using a Socket object to connect to a server is just fine when Defect is running as an
application, but when Defect is running as an applet, a SecurityException isthrown. This
is because all applets run under a SecurityManager that imposes certain restrictions on
the capabilities of an applet. One of these restrictionsis that an applet cannot
communicate with any servers other than the server the applet resides. The Defect applet
does not reside on the smtp.fnal.gov server, and therefore cannot communicate with it
directly.

There are two possible solutions around this obstacle. Oneisto install a mailer daemon
(like sendmail) on the server with the Defect applet (this solution may be explored later).
The other solution is to use Common Gateway Interface (CGIl). CGI provides an
interface that allows hosts to execute applications on a server. Since these applications

27

run on the server, they are not as restricted as applets. Thus Emailer can execute a CGlI
program residing on the same server as the Defect applet to send the requested email.
Thisis the solution that is currently used in the DescribeFrame.

The program used to send the email is a script written in Perl (see Appendix for script
code). To communicate with the script, Emailer creates an URL Connection object with
the URL address of the script. Then a string is assembled containing the fields “to,”
“from,” “subject,” and “body.” Each field is associated with a value in the string using
the characters “::” (i.e. “to::;johndoe@fnal.gov”) and delimited using “&&” (i.e.
“to::<you>& & from::<me>"). Afterwards, an OutpuStream is obtained from the
connection, and the string is printed on the stream. The script will not run until an
InputStream is also obtained, but this must be done after the string is sent to the
OutputStream. When an InputStream is requested from the connection, an Exception is
very likely to be thrown (thisis most likely because of wrong configurations on the
server), but this does not mean the script did not run properly. So this Exception is
trapped in atry/catch block surrounding the request of an InputStream:

14 miblic s=tatic woid createEmail (Hashtable data)

15 throws Exception {

16 URL url = new URL({Defect.getBa=e(). "cgi-bin<email cgi"):
17 TELConnection conn = url openConnection()

13 FrintWriter out = new PrintWriter{conn.getOutputStreami)):
19 s~zend info to =cript

20 String mailing = "to: " + data.get("SendToAiddre==") + "&&"
21 + "from::" + data.get{"Fromiddre==") + "&&"

22 + "subject: " + data.get{"Subject") + "&&" + "bodw: "
23 + data.get{"Bodv"):

24 out . println{mailing);

25 out . flushi);

26 out . closel);

27 trvwd

28 InputStream in = conh.getInputStreamn()

29 } catch{ICOException 1e) {

a0 <% Emception generated should be httperror code 500.
31 * Otherwi=s, the script did not run properly *®7

32 if (ie. toString() . indexCf ("500") < 0) {

33 throw ie;

24 T

a5 T

36 T

The problem with CGlI is that is does not allow efficient error handling in the applet. So
CGlI will be used only when necessary (when Defect runs as an applet), and use the
send() method whenever possible (when Defect runs as an application). If Defect runs as
an application, the AppletFrame class will be instantiated (see Appendix for AppletFrame
class). Thus Emailer chooses whether or not to use CGI depending on whether or not an

AppletFrame object exists:

14 rublic =tatic woid createEmail(Hashtable data)
15 throws Exception {

16 if (AppletFrame.islnstantiated()) {

17 Senme sendl)

13 T oel=e {

119 Souse oI

20 T

21 T

28

DbA ccessor

The DbA ccessor establishes the connections to the Defect Tracking database. A
DbAccessor is used by the DataManager to communicate with the database. 1n order to
setup communication with the database, the DbA ccessor must first determine the data
source of the database and the appropriate driver to accessit. These may be determined
by Defect’s static method, getProperties(). The driver isloaded by calling the static
method, Class.forName(), which loads a class. If Defect is runas an application or the
driver and dataSource parameters are not defined for the applet, getProperties() will
return an empty Properties object. In that case DbAccessor uses the Postgres driver as
default:

4 public cla== DbAccessor

5 <«Data Hemnbers

A public final =tatic String POSTGRES DEIVEER:

7 public final static String SYBASE DEIVEE:

a public final static String POSTGEES DATA SOURCE;
g public final static String SYBASE DATA SOURCE:
1a private String driver. dataSource;

11

12 public DbAcces=or() {

13 FProperties pro = Defect . getProperties();
14 driwver = pro.getProperty("driver"):

L5 dataSource = pro.getProperty('dataSource")
L& if (driwver == null || driwver equals{"")) {
17 driver = POSTGREES_DEIVER:

la dataSource = POSTGRES DATA SOURCE:;

19 ¥

20 try {

21 Cla=s=s. forHamneidriver)

22 } catch (Exception =) 4

23 2. printStackTrace();

24 Sy=temn.out . println(

25 "Could not initialize driver!"):
26

27 '

2803

DbAccessor defines 5 methods: connect(), disconnect(), query(), update(), and
getDriverName(). The getDriverName() method simply returns the name of the driver
being used. The connect() and disconnect() methods opens and closes connections to the
database. The connect() method is expected to be called before query() or update() is
used, and disconnect() is expected to be called afterwards. To make a Connection, the
DriverManger classisinvoked to call on the Driver loaded in the constructor. Once a
Connection is made, a Statement is created from the connection to allow the DbA ccessor
to execute SQL statements. To disconnect, the Statement and Connection objects are
closed:

29

29 private final s=tatic String uid:

a0 private final =tatic String pwd:

31 private Connection con;

32 private Statement stmt;

33

34 public woid connect() throws Exception {

a5 con = DriverManager getConnection{dataSource, uid, pwd);
36 stmt = con.createStatement();

a7 T

a8

319 public woid disconnect() throws Exception {
410 if (con = null) {

41 ztmt . clo=e();

42 con.close):

43 con = null:

44 stmt = null:

45 T

4k T

Note that these methods may throw Exceptions.

The query() method takes a SQL query statement and executes it using the Driver
Statement created in the connect() method. The result of the query comes in the form of
a ResultSet object (defined in the java.sgl package), which is returned by query():

43 iblic ResultSet quervi(String =gl) throws Exception
49 if (con = null) {

g0 ResultSet rst = stnt. executeQuervi=gl);

51 return ret:

5 } else {

53 throw new Exception{"Ho Connection to DE!"):
54 T

55 T

The update() method is similar to the query() method. The update() method takes a SQL
update statement and executes the update using the Driver statement. No valueis
returned:

S piblic woid update(String =gl) throws Exception {

ga if {con != nully {

59 =tnt executelpdate(=dgl):

&0 T else {

61 throw new Exception{"Ho Connection to DE!");
(a9 T

G T

Like connect() and disconnect(), update() and query() may generate Exceptiors that must
be caught at some point.

DataM anager
The DataManager constructs the SQL statements depending on which methods are being
called, and sends them to the DbAccessor. If the DbAccessor returns a ResultSet, the
results are processed and returned in an appropriate format.
DataManager is a singleton class and, therefore, has only one instance. The constructor

is defined as private and the class provides a static method that returns the instance of the
class:

30

4 public cla==s Datalanager {
5 private MessagePanel mpanel = new MessageFanesl():
3] private =tatic DataManager _instance = new DataManager():
7 private DbAccessor dba = new Dbicces=ori):
a
4 private DataManager() {
10 T
11
1z public =static DatalManager getlnstancel) {
13 return _instance;
14
15 public static wvoid setM=gPanel{Mes=zagseFPanel mpanel) {
16 _in=tance. mpanel = mpanesl;
17
18}

The Defect database consists of several tables and fields. Figure 6 shows a schematic of
the tables, their fields, and how the tables are related. Apparently the tables are not in the
simplest form, and thus long and complicated SQL statements must be constructed to
perform queries and update data. Also these SQL statements may be driver dependent,
making it necessary for the DataManger to call on DbAccessor’s getDriverName()
method. The actual syntax and construction of these SQL statements are not very
interesting and will not be discussed in length.

Defect Tracking Database

Problem
problemId Systems
slystemname — systemname
Comments ttle
Requests problemld
requesttype status
Hﬁhhx“ﬂﬁ e
sy
assignedto
Categories descripton
category commentdate
\\ category Coordinators
enrydatetime — person
comrmentor cople
\ Systerm

person

email

Figure8: Defect Tracking Database.

DataManager defines 4 methods that returns field names in the database: getCategories(),
getSystems(), getPersons(), and getRequests(). These methods return a Vector containing

31

the desired fields. Once these methods retrieve the fields, the fields are stored so that
they may be returned in the future without using the DbAccessor for a second time:

21 miblic Vector getSy=stem=() throvs Exception{

22 if {=y=stem= != null) {

23 return svystemns:

24 T

25 String =gl = "SELECT #* FEOH =v=tem= order by sy=temHams",
26 mpanel . =etColori{Color . blaclk);

27 mnpanel =etMessage("Getting Sv=temns from DE")

28 try {

29 dba . connect()

a0 r= = dba.guervi=gl):

31 zvstens = new Vector():

32 while(rs. next()) {

33 String str = r=.getString(l);

34 systens . addElement (=tr) ;

a5 T

36 npanel . =etMessage("Donse") ;

a7 dba . disconnect ()

38 return systemns;

39 } catch (Exception =) {

410 syztems = null;

41 npanel =etColor{Color. red) ;

42 mpanel =etMeszage("Failed to get Sv=temns from DE. ")
43 try{dba. disconnect();} catchi{Exception i=) {}
44 throw e

45 T

46 T

Here a connection is made to the DbA ccessor and its query() method is called. This
method returns a ResultSet, which is processed to produce a Vector in while loop. Once
the Vector is made, the connection is closed and the Vector is returned.

Note that the getSystems() method catches Exceptions from the DbA ccessor only to
throw them back again. Exceptions are caught here for two reasons. The first is to make
sure the DbA ccessor’ s disconnect() method is called at some point, and the second is to
display appropriate error messages with the MessagePanel. Since the DataManager is not
fully equipped to handle the Exceptions completely, the caught Exception is thrown again
so that it can be handled by the upper level components. This Exception handling will be
seen throughout the DataM anager.

The query() method takes a Hashtable holding the query parameters and returns a 2-
element Vector array in the format discussed previously. The query() method is defined
to handle any query parameter, except a problem id parameter, that may be given by a
Defect component and constructs a SQL statement by concatenating the parameters:

32

i public Vector []querg(Hashtahle query) throws Ezxception {

49 String =gl = "SELECT p.problemld. o commentDate,
50 if {guerv.get("Sy=temn”) != null) {

51 =gl = =gl + "and svystembamns = ~'"
52 + query.get("Sy=ten”") + "

53

54 if (query.get('CategDry b= null) {
55 =gl = =gl + "and 1. Dategury = \'
1] + query.get{"Categorvy") + "'
57 ¥

5a if (query.get('Statu=z") |I= null} 1
59 =gl = =gl + "and 1.=statu=s= \'

=41 + gquery.get{"Statu=s") + "~

Bl i

b2 <% a2to ®s

A3 =gl = =gl + "and c.commentDate = .. "
B4 return runCuervi=gl):

65 ¥

Since the query() method attempts to handle any possible combination of parameters that
may be given by a Defect component, it is possible to construct a query that will never
return any results. Therefore, it isthe responsibility of thecaller to give a combination of
parameters that makes sense.

The idQuery() method takes a string representing a problem 1D number and makes a
problem ID query. This method is defined outside of the query() method because this
search only requires one parameter and the SQL statement is of a different structure:

67 public Vector[] 1dQuery{5tr1ng id) throws EHDEDtan {
B Strlng =gl = "SELECT p.problemld. .

(%! + "where problemId = " + id

70 + " and c.commentDate = ... ":

71 return runCuervi=dgl):

72 ¥

The getHistory() method is similar to the idQuery() method. It also takes astring
representing a problem ID number and returns a Vector array of data. The only
difference is the structure of the SQL statement generated.

The query(), getHistory(), and idQuery() methods call the protected method runQuery().
This method takes an SQL statement, sends it to the DbA ccessor using its own query()
method, and takes the returned ResultSet and processes it to return a 2-element Vector
array representing the table data:

33

74 protected Vector [] runfQuervi(String =gl) throws Exception {

75 Vector twovector [] = new Vector[2]:

T mnpanel =etColori{Color. blaclk);

7 npanel . =setMes=zage("Querving DE") ;

78 trv {

79 dba . connect ()

a0 ResultSet r= = dba. quervi(=gl):

g1 FezultSetletalData r=md = r=. getMetalatal);

g2 int count = remnd.getColunnCount();

23 Vector columnnNames = new Vector{count):

a4 for (int 1 = 1; 1 <= count; i++) {

a5 columnHames . addElemnent (remnd . getColunnHanse{1)) ;
a6 T

a7 twvovector[0] = columnNanes;

a8 Vector data = new Vector():

a9 Vector rowlData:

an while{rs . ne=xt()) {

91 rowData = new Vector():

92 for (int 1 = 1; 1 <= columnNames . =ize(): 1++) {
93 rowData . addElement (r=. getStringi{i));
94 T

95 data . addElemnent {rowvDatal

95

97 twovector[l] = data;

93 dba . disconnect():

99 npanel =etMesz=zage("Ouery Completed”)

10n0 return twovector:

101 } catch (Exception e) {

102 mnpanel =etColori{Color. red)

103 try{dba. disconnect();} catchi{Exception i=) {}
104 npanel . setMessage("Query failed! Try Again Later."):
105 throw e;

106 T

107 T

Lines 81-87 retrieve the column names and place them in the first element of the Vector
array. Lines 88-97 retrieve the row data and place it ina2-D Vector. ThisVector is
placed in the second element of the array, which is returned in line 100.

The last query method defined in DataManager, getEntryData() takes a string
representing a problem 1D number and returns a Hashtable representing entry data. Since
its return type is a Hashtable, getEntryData() cannot use runQuery() and must do most of
the work on its own. The major difference between this method and runQuery()’s
handling of the ResultSet returned by DbAccessor is that getEntryData() expects only one
row to exist in the ResultSet and this row data is placed in a Hashtable rather than a
vector:

109
110
111
112
113
114
115
1l
117
115§
1149
120
121
122
123
124
125
126
127
1218
129
130
131
132

public Hashtable getiAllDatal(String id) throws Exceptlnn {

String =gl = "SELECT co.problemld, p.=v=temHans,
Hashtable data = new Hashtable():
try {

mpanel . ==tColori{Color . blaclk);

mpanel . setMessage("Getting Data for DBE"):
dba . connect();

FesultSet r= = dba. guervi=gl):
FezultSetMetalData r=md = r=. getMetalatal):

int count = r=md. getColumnCount();
re=.next{);
for (int 1 = 1; 1 <= count; i1++) {

data. puti{rsmd. getColumnHanse({1i). r=.getString(i));

dba . disconnect () ;
return data;

+ catch (Exception 214

mpanel =etColori{Color. red);
mnpanel =etMes=zage(

"Exception encountered while getting data")
tryv{dba. disconnect();} catchi{Exception is) {}
throw e

The newEntry() and updateEntry() methods take a Hashtable representing entry data.
These methods send updates to the DbA ccessor, and thus calls on its update() method.
The only difference between these two methods is the construction of the SQL statement
that is given to update(). The newEntry() method needs to construct 2 SQL statements,
and updateEntry() needs to construct 3 statements. More than one statement is needed
since only one table in the database may be updated at atime. Here is some sample code
that resembles newEntry():

12
13
14
15
16
17
13
14
20
21
22
23
24
25
26
27
28
29
20
al
az
a3
a4
3k
36
az
ag
a9
40

public int newEntrvi(Hashtable data) throws Exception {
String i1d=gl = "Select MAX{problemId) from ...";
String =gll "ingert into comment=s({problemId. . "
String =gl? "insert into :
int id;
try
npanel =etColori{Color . blaclk’:
mnpanel =etMes=sage("Tpdating DBE")
Sofind max problem id number
dba . connect{);
FesultSet r= = dba.guerv(id=gl):
r=.next();
1d = r=.getlnt{l) + 1:
s¥finizh =gl construction with problem id =7
sozend new entry
dba updatei=gl?):
dba updatei=gll):
npanel . =etMessage("DE updated")
dba . disconnect ()
S return problem id
return 1d;
+ catch (Exception =) {
Sy=ten.out . printlni{=sgl);
mpanel =etColor(Color . red):
mpanel =etMez=zage("Exception encountered”)
try{dba disconnect().} catch{Exception 1e) {}
throw e;

35

In the case of newEntry(), the database must be queried in order to find the largest
problem ID number that currently exists (Lines 143-145). Then the new entry is added to
the database with max problem ID plus 1 asits problem ID number. This number is
returned once the database is updated. The updateEntry() method does not have to worry
about this, and it ssimply creates the SQL and calls update().

Conclusion

The appearance of the fina product, DPPTS Applet version 2.0, can be seen in figures 7-
12. Note that the appearance of the final product is not that different from that of its
predecessor, version 1.5.2. This should be no surprise since the two versions have, for
the most part, the same specifications.

-0l
Defect, Problem, & Progress Tracking V2.0 ‘ Hew ‘ | Update | ‘ History ‘ | Print |
— Search Options D | Date | Systermn | Status | Category | Title |
237 1980-01-0... |PC Support closed Configurati...|Defective date dugto .. |~
|l Systems v 136 1887-07-0... |DMCS closed In-house 5...|Hardware test]
|,n,|| Categories v| 133 1988-01-0... |DMCE cloged In-house 5...|slow scan
138 1998-02-0... |DMCS deferred In-house 5. Videa camera
|A|| Request Types 7 | 168 1998-03-0... DMCS cloged In-house S... | Database model
|AII Persons v| 167 1988-03-0... DMCE closed In-housze ... |Requirements specifi...
171 1998-05-0... |DMCS closed In-house 5...|Prototype Pasitioning ...
|AII Stats - | 135 1998-07-1... DMCS closed In-house 5. [Main rmenu
170 1958-08-0... DMCS deferred In-house 5. |Refined data model.
|AII Severities v| 164 1988-08-1.. \DMCS closed In-house 5. | Prototype of GLIL
131 1998-09-2 . |DMCS closed In-house 5. |Remote File System (..
[] Last Month 134 1998-09-2... | DMCS closed In-house 5. CCS
132 1998-10-0... |[DMCS closed In-house 5..|Scrike
probiern ID: | 225 1988-10-2.. PC Support [closed Metwork |131.225.47.128 subn..
| Submit Querny | 144 1998-11-2... |DMCS closed In-housze ... \Documentation of cal...
137 1988-12-2.. DMCE closed In-housze ... |Calibrations entry ap...
| Advanced Options e 1995-01-1... |[EMS closed In-house 5. |Froject organization: .. ||
Getting Data for DB

Figure9: Defect Applet Version 2.0

36

=[0/]
Dismiss ”7 Reset ” Apphy |

Event Date: ID Categories:
|2002-08-01 0050|237 ‘Cunﬁguraﬁun v|
Title
|Defeu:tive date due to Y2K prablem on Jerzy's laptop
System: Status: commentor:
| PC Support - || closed - ” Unspecified Commentor |
Type: Severity: Assigned To:
|defet:t - || low - ” Ping YWang - |
Descripton:
-
[~

Figure 10: Update Entry Frame

i

Dismiss Reset Apphy

Event Date: Categories:

|2IZIIZIE-EIB-IZI1 na:40 Unknown -
Title

ISystem: Status: commentor:

Unknown System ~ || open * [Unspecified Commentor
Type: Severity Assigned To:

defect | low * [Not Assigned -
Descripton:

Figure11l: New Entry Frame

37

& History of All Comments o] |

| Description | | Update | | Dismiss | | Print |
D [Date | commentor | Status | Severity | Type | AssignedTo | Description
237 1980-01-04 14:... |Dana Walbridge |open vy defect Jerzy Mogiee [The clock (s als...
237 2000-01-04 14:... |[Dana Walbridge |open Iy defect MotAgsigned |Jerzys laptop h...
237 2001-09-27 14.... |Ping YWang closed | oy defact Fing Wang The clockwas ..

Description:

The clock is also slow. Jerzy will determine what course of action to take. The initial commentor was Dana Walbridge, who did enter his name;l
as the commentor, and was observed by three withesses of sound mind. Its notyeat clear why the commentor was notincluded in the first
entry for this problem.

|

Figure12: History Frame

e
Email Dismiss

Descriptions:

I 237

Diate: 1980-01-04 14:26:00-06

Cammentar: Dana Walbridge

Status: open

Severity: ow

Type: defect

Assigned To: Jermy Mogie:

Description: The clockis also slow. Jerzy will determine what

course of action to take. The initial commentorwas Dana Walbridge, who

did enter his name as the commentar, and was chsened by three

witnesses of sound mind. Its notyeat clearwhy the commentor was not

included in the first entry for this problem. ||

I 23T

Date: 2000-01-04 14:15:00-06

Cammentor; Dana YWalhridge

Status: open

Severity: low

Type: defect

Assigned To: Mot Assigned ;|

Figure 13: Description Frame

38

I
Dismiss Reset Submit

Start Date: End Date: Categories:

| |2002-08-01 All Categories -
System: Status: Commentor:

All Systems | All w || All Persons -
Type: Severity: Assigned To:

All Request Types | All w | All Persons -
Kevword:

| |

Figure 14: Advanced Search Frame

Version 2.0 may use one of two drivers to access the database: the Sybase driver or the
Postgres driver. The classes that provide the functionality of these drivers are not
standard classes in Java, however. Thusin order to run version 2.0, these special classes
must be included somewhere. Currently the Postgres classes reside in ajar (Java
Archive) file called “postgres,” and the Sysbase classes reside in “jconnect2.” In order to
run version 2.0 as an application, one of these files must be included in the classpath
depending on which driver isbeing used. As an applet the jar file needs to be added to
the applet classes by setting the “ARCHIVE” parameter of the “<APPLET>" tag equal to
the desired jar file.

Version 2.0 was implemented using Java Software Development Kit version 1.3.1, and
thus requires Java Runtime Environment version 1.3 or better to run properly. Soin
order to run Defect as an application, afairly recent JRE needs to be installed on the
console Defect is meant to run on, and in order to run Defect as an applet, the user’s
browser must posses a fairly recent virtual machine for Defect to run properly. But sadly,
any version of Internet Explorer and Netscape (the most common browsers) below
version 6.0 uses fairly old virtual machines that are not compatible with many of the
updates in JSDK version 1.3. Since these browser versions are the most common, the
HTML file containing the “<APPLET>" tag for Defect is converted with the Java
program HTML Converter, which forces the browser loading the converted HTML to use
the Java plug-in to run the applet. This guarantees that the applet will be run in afairly
recent runtime environment.

DPPTS Applet version 2.0 currently resides at the address http://mtfpc22.fnal.gov/Defect.

39

References

Cornell, Gary and Cay S. Horstmann. Core Java 1.2, Volume 1-Fundamentals.
Californiac Sun Microsystems Press, 1999.

“Sending E-mail from Perl for NT.” <https.//secure.unisite.net/html/sendmailnt.html>.

Acknowledgements

| would like to thank the SIST committee members for allowing me this work
opportunity at Fermilab. Furthermore, | would also like to thank my supervisor, Jerzy
Nogiec, for his guidance and support throughout my internship and give my gratitude to
the SDSG team, Kelly Trombly-Freytag, Dara Walbridge, Ping Wang, Gene Desavouret,
Pennie Hall, and Frank Burzynski for all their help and support in finishing my project.
And findly, | want to give a specid thanksto al the SIST interns who have not only
made this summer an enjoyable one, but have also enriched my life and left me with an
experience I'll never forget.

40

Appendix A: AppletFrame class

/**

* AppletFrame

* Source: Core Java Volume 1 - Fundamentals
* Example 10-12, p. 580-581

* @version 1.21 31 July 2002
* @author Cay Horstmann
*/

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.net.*;
import java.util.*;
import javax.swing.*;
import javalang.*;
import java.io.*;

public class AppletFrame extends JFrame implements AppletStub, AppletContext{
private static boolean instantiated = false;

public AppletFrame(Applet a, int X, int y}{

instantiated = true;

setTitle(a.getClass().getName());

setSize(x, y);

addWindowL istener(new WindowAdapter()

{ public void windowClosing(WindowEvent €)
{ System.exit(0);
}

)
Container contentPane = getContentPane();

contentPane.add(a);
a.setStub(this);
ainit();

show();

astart();

}

/**
* Added by John Biddle
* @returns True if instance of AppletFrame exists.
*/
public static boolean islnstantiated() {
return instantiated;

41

}
/I AppletStub methods
public boolean isActive() { return true; }
public URL getDocumentBase() { return null; }
public URL getCodeBase() { return null; }
public String getParameter(String name) { return ""; }
public AppletContext getAppletContext() { return this; }
public void appletResize(int width, int height) {}

/I AppletContext methods

public AudioClip getAudioClip(URL url) { return null; }
public Image getimage(URL utl) { return null; }

public Applet getApplet(String name) { return null; }
public Enumeration getApplets() { return null; }

public void showDocument(URL url) {}

public void showDocument(URL url, String target) {}
public void showStatus(String status) {}

public InputStream getStream(String key) { return null;}
public Iterator getStreamKeys() { return null;}

public void setStream(String key, InputStream stream) {}

42

Appendix B: email.cgi

#! [/ usr/ bi n/ perl
sends emmi| over sntp
Requires the fields: "to," from" "subject," and "body."
Fi el ds nust be associated with correspondi ng values with
the characters "::", and the field/value associati ons nust
be delimted by "&&"
source: "Sending E-mail from Perl for NT",
https://secure.unisite.net/htm /sendmailnt. htm
use Net:: SMIP;
$line = <STDI N>;
$temp = $line;
while ($temp) {
$tenp = <STDI N>;
$line = $line. $tenp;

HHHFHHHR

}
@par ans split '&&', $line, 4;
for (9i 0; $i < 4; i +=1) {
@ist =split '::', @arans[$i], 2;
if (@ist[0] eq "to") {
$to = @ist[1];
} elsif (@ist[0] eq "from') {
$from= @ist[1];
} elsif (@ist[0] eq "subject”) {
$subject = @ist[1];
} elsif (@ist[0] eq "body") {
$content = @i st[1]
}
}

$smtp = Net::SMIP->new(' sntp.fnal.gov');
$snt p->mai | ($from ;

her e

$snt p- >t o($t o) ; # recipient's address
$snt p->data() ; # Start the mail

connect to an SMIP server
use the sender's address

H* H®

Send the header.

$snt p- >dat asend("From ".$from"\n");

$snt p- >dat asend("To: ".$to."\n");

$smt p- >dat asend(" Subj ect: ".3$subject."\n");
$snt p- >dat asend("\n");

Send the body.

$snt p- >dat asend($content) ;

$snt p- >dat aend() ; # Finish sending the nail
$snt p->qui t; # Cl ose the SMIP connecti on

print 'success';

43

