What I Break? – What Breaks Me?

A Perl Programming Project

[image: image1.png]

Eunice D. Smith

Elizabeth City State University

Elizabeth City, NC 27909

Dr. David J. Ritchie, Supervisor

Computing Department

Fermi National Accelerator Laboratory

Summer Internships in Science and Technology

Batavia, IL 60510

August 9, 2001

1 Abstract
This paper explains the work done to improve a Perl program that produces a web page to aid the D0 Run II project. The web page was designed to display the name of software packages with compilation and other types of errors.

2 Introduction

Everything is made up of atoms. In school, one learns that atoms are made up of electrons and a nucleus, which is made up of protons and neutrons. Therefore, many are familiar with the basic fundamentals of matter. For years, physicists have been studying matter and its subatomic particles.

Research at Fermi National Accelerator Laboratory (Fermilab) examines the subatomic particles that make up the protons and neutrons within the nucleus. For example, quarks make protons. High energy physics deals with accelerating particles close to the speed of light which are then made to collide with other particles.

Fermilab currently houses the Tevatron, the highest energy accelerator in the world. In 1977, the bottom quark was discovered at Fermilab. The top quark was discovered in 1995, after years of research by the DZero and CDF experiments.

The Tevatron is used to collide antiprotons and protons at speeds approaching the speed of light. DZero and CDF detectors are used to record these collisions or events. Computer programs are used to analyze the recorded data. From these analyses, physicists are able to determine the properties of the subatomic particles that were present.

Complex software is often used for extensive research and analysis projects. The D0 Run II experiment at Fermilab examines particles and properties of matter that emerge as the result of colliding protons and antiprotons. The complex software is grouped into packages. These packages of C++ code are called components. The components are combined to make higher level components called targets. The targets are farther combined to make more complex targets.

A file called a “make” file describes how component packages are part of target packages; it lists targets and their component dependencies. There is a need to understand the hierarchy of the packages. In the “make” file (see Figure 1), CINT is one of the lowest level packages. PhysicsVectors is a higher level target and a dependency of HepTuple.

The “make” file shows the individual target to component dependencies. There is not a file that shows the overall dependency tree. This can only be obtained by piecing together the individual dependency trees, which are contained in each line of the “make” file. For this reason, the program, What Breaks What, was written in a computer language called Perl. Its purpose is to analyze the “make” file, combine the dependency trees, and display the results as a web page. My project was to extend this program to analyze and display the information in a different manner.

3 Steps in Preparation: Learning and Applying New Skills

3.1 Learning and Applying Perl

Perl (Practical Extraction and Report Language) is a programming language that I had to learn for this project. The first step to programming in any language is the learning the basics. Therefore, my first task was to go through a small introductory course. In this course, I was introduced to the general structure of simple Perl programs. Features that are common in Perl, such as subroutines and hashes, were also reviewed. After completing most of the course, I copied and ran an adventure game. Finally, I created an adventure game of my own and gained more programming experience.

3.2 Learning and Applying Unix

Unix is a computer operating system that dates back to the 1970s. It has become popular in the world of computer technology in part because it is inexpensive, capable, and convenient. The program that I was to extend ran on the Unix operating system. For that reason, I had to become familiar with it. During the first week, I attended a Unix workshop, which provided an introduction to the system. Through this class and my own efforts, I became able to write, modify, and run Perl programs while working in a Unix command window (shell) environment.

3.3 Learning and Applying the vi editor

The vi editor is one of the editors found within the Unix operating system. I read the section about the vi editor from a Unix book, and thereby learned to use “vi.”

Through the vi editor, I was able to make a file by bringing up vi, start typing, and save.

3.4 Learning and Applying Emacs

Emacs is a user-friendly and more capable editor than vi – particularly for files with many lines of Perl statements. A tutorial is provided to teach the essentials for usage. When using this editor, the writer specifies the type of document s/he is writing, whether it is Perl, html, text, etc. The editor also has an auto save function; thus, there is a backup file. All of the commands taught in the tutorial were quite helpful. Most of the code development of the program was done via Emacs editor.

3.5 Learning and Applying cvs

CVS (Concurrent Version System) is a program that can be used by more than one user from remote locations. Most importantly, it was used to keep track of versions for this project. Whenever someone saves and commits the changes, the system saves the changes by making new versions, called revisions. Each revision can be recalled and compared.

3.6 Applying HTML

HTML (Hypertext Markup Language) is a code that is often used to make web pages. I brought knowledge of this language with me to Fermilab. One very important rule is that in order for the page to display, you must start the text with “<html>” and end with “</html>”. A general rule about html is that whatever you open or start, you must close or end. My first task was to start making my own web page. Later, I would use these skills to add html into Perl code.

4 The Process

4.1 Deciphering the Code

After gaining some knowledge of Perl, editors, cvs, and Unix I was given the “wonderful” job of studying the What Breaks What* code. A 600Kbyte web page was the product of this long and complicated code. My first assignment was to use a Perl book to decipher what the program was doing. It took a couple of days to go through the code line by line and write what I understood. Now I was officially introduced to real Perl programming.

4.2 Reviewing the Code

Later, my supervisor and I discussed what I thought the program was doing according to the code, and the web page. While reviewing, I learned that there were quite a few things that I did not understand. He cleared up my concerns about the code and explained a better way of understanding it. See Figure 2.1 (Perl Code Outline). See Figure 2.2 for a copy of part of the code.

4.3 Deciding on the Goals for Extension

Goal setting is an important aspect of a project. My supervisor and I talked and wrote down the main goal and minor goals that would be needed.

The main goal was to provide the D0 Run II project with a web page that displays in color what a component or routine breaks and whether or not it is broken; this would enable bugs and causes to be analyze and detected easily.

Our first goal was to display routines in red that have compilation and other types of errors. Goal 2 was to improve the display time of What Breaks What. Goal 3 was to make each component/routine have a table of its own. Links were to be made for each component, from the summary page to a smaller page with just the component and its table. As time progressed, a few more goals were made and eventually achieved.

4.4 Improving Display Time

Time is precious; therefore, one must use it wisely. When we first ran the original What Breaks What, it took a long time to run and a long time to display the web page. To address this, links were added from the component names to the table data. The amount of time improved; it took less than half as much time to run the program and display the page. We checked our changes into cvs. Progress was being made.

4.5 Testing The Product

Make files are files that are made up to use and test programs. In this particular case, the make file being used to run the program was rather long. We felt that it would be better to make a smaller file to test the program. This would allow us to debug and make changes in the code more quickly. I made a test make file and used it to test our changes in the code. Eventually, we checked the program into cvs again. My supervisor announced that the code had been improved and anyone working on the D0 Run II project was welcome to try it out.

4.6 Feedback from Others

We did receive some comments from those who visited the What Breaks What website. One person made a few suggestions that were very useful. He suggested that we list the components in alphabetical order. He also suggested that we write another program to produce tables of components that break the component listed.

4.7 A New Idea

A new idea had been presented. We were going to develop What Breaks Me from What Breaks What. The name of What Breaks What* would be changed to What I Break.
Two programs would be derived from the original program. This would allow one to have two ways to examine what packages will affect each other. If an error occurs when compiling one component, one can use the display to determine what other components will stop working and vice versa. These questions were to be answered and displayed on two web pages.

4.8 Developing a More Realistic Model Debug Environment

We were running the program on a make file alone. A subroutine needed to be added to check for errors in compilation. Directories, files, and subdirectories needed to reflect the true environment that existed in the D0 Run II software as this would be where our program would be run. Thus, we took on the task of making up directories and subdirectories that minimized the D0 Run II environment. Fake test data and compile data were also added. The data structure of the code had to handle the arrangement of these files.
4.9 Using Model Debug Environment

We spent several days creating an environment in which to test the program. A subroutine, and other parameters were also added to the Perl program. Switch cases were established for input data. The model debug environment was eventually ready. The Unix shell was then used to invoke the programs and specify the input and output files.

We were able to debug the program.

5 A Closer Look at What I Break & What Breaks Me
5.1 Examining What I Break
What I Break was designed to display and list all of the components that each component can break: “If I am a broken component, what other components will break because of me?”

The answer to this question is displayed in the form of a table. The component’s name is located on the left side of the table; all of the components that can break are listed on the right. The result is very similar to Figure 3 (See What Breaks Me immediately below).

5.2 Examining What Breaks Me
What Breaks Me was designed to display and list all of the components that break a single component. “What components have the ability to break me?” The answer to this question is displayed in the form of a table also. Located on the left side of the table is the component’s name; all of the components that can cause it to break are listed on the right. See Figure 3.

Figure 3

	What Breaks Me

What Breaks Me processes a make file (e.g., libdeps.mk). It recursively

Examines the items in each target : dependencies line and constructs a

Table of what breaks me.

The left column of a row lists an item which is linked to a table giving the

Items that break the initial item. The right column lists the number of items

In that table.

Summary

Input file: ../data/test2.mk

Output file: testing.html

Undesired targets: PHONY pkgs

Number of Targets: 3 Number of Items that Can Break Things: 5

Target Name

Number of Components That Break This Target (Not Counting Itself)

CLHEP

0

Exceptions

1

HepTuple

4

Physics Vectors

2

6 Tasks Pursued

Many of our goals were achieved. Names of components were linked to the table data to display separate web pages successfully. The processing time was significantly reduced. Components were placed in alphabetical order, making broken components are easier to locate. Two programs have been written and checked into cvs.

7 Tasks Not Pursued

There was one task that we started but decided not to pursue. At one time, my supervisor directed me to study the book called Perl DBI (Database Interface). My first goal was to go through a book and try to understand how to use Perl DBI. I read the book for quite a few days. It became clear that the book was not sufficiently well written to serve as a textbook on the database interfacing capabilities of Perl. Therefore, we decided not to pursue this part of the project.

8 Conclusion

Perl is a very convenient programming language. Attributes of Unix shell scripts, C, and other languages have been combined. The language was somewhat easy to use. We were able to link items and shift parameters around to produce a summary page with a list that provided links to smaller pages with tables. Working with Perl has enlightened me about programming. I find programming to be a somewhat tedious, yet rewarding process. The end result was two Perl programs that created two web pages with links to tables that display where errors can occur and are present.

9 Acknowledgements

I have several reasons to be thankful. First and foremost, I would like to thank God for giving me courage, energy, and ability. I would like to thank all of the many people who have allowed me the opportunity to work here at Fermilab.

Thank you, SIST committee for selecting me for your program. Thanks Mrs. Dianne Engram, Mrs. Audrey Arms, and others for helping me to arrive here.

A special thanks goes out to my supervisor, Dr. David J. Ritchie, for working with me and for sharing knowledge, encouragement, patience, and support; without you, my project would have not been possible. I would also like to thank Kurt Ruthmansdorfer for his ideas about What Breaks What.

To my mentors, Elliot McCroy and Jean Slaughter, thank you for being there for me and giving us the extra push to do our best.

Thank you, encouragers, co-workers, and friends.

Last, but not least, I would like to thank my fellow summer students. You have made this experience a fun and successful one. I wish you much success, happiness, and prosperity.

10 References

1. Net.Genesis and Devra Hall, Build a Web Site, Prima Publishing, 1995.

2. Larry Wall, Tom Christiansen and, Randal L Schwartz, with Stephen Potter, Programming Perl, O’Reilly & Associates, Inc., Second edition 1996.

3. David J. Ritchie and Margaret Gilmore, Learning to Program in Perl, Madison Junior High School Computer Club, 1999.

4. Alligator Descartes and Tim Bunce, Programming the Perl DBI, O’Reilly & Associates, Inc., 2000.

5. Per Cederqvist, Version Management with CVS, Signum Support AB, 1993.

6. http://www.perl.com
7. SIST Lecture Series 2001

Figure 2.1

Outline of Perl Code

Accept and Process Input Parameters

Analyze the “Make” file

Store results in hash

Print out number of targets and components

Report Dependencies

Walk through each string of targets and dependencies

Recursively call subroutine to analyze components**

**A components refers to both targets and dependencies

Figure 2.2

input and output files

if (! $infile or ! $outfile) { &Usage; exit; }

if (-e $outfile) { die "Output file $outfile exists";}

open INFILE, $infile or die "Can't open $infile: $!";

open OUTFILE, ">$outfile" or die "Can't open $outfile: $!";

#

set title

my $Title = "What Breaks What";

#

put out header

print OUTFILE "<HTML>\n" ;

print OUTFILE "<HEAD>\n" ;

print OUTFILE "<TITLE>\n" ;

print OUTFILE "$Title\n";

print OUTFILE "</TITLE>\n" ;

print OUTFILE "</HEAD>\n" ;

print OUTFILE "<BODY>\n" ;

my $linecount = 0;

my $item = 0;

my @Targets;

my %ListOfWhatIBreak;

#

while there are lines from the libdeps.mk file...

while (<INFILE>) {

 chomp;

 #

 # if format is...

 if (m/^\s*$/) {

 #

 # ...empty line, then skip

 # ...(e.g., begin of line, zero or more white space, end of line)

 if ($main::debug >= 2) { &DebugPrintOut($BegLine, $NewLine, $linecount, '(whitespace)'.$_); }

 #

 $linecount++;

 next;

Figure 1

.PHONY: pkgs

.PHONY: CINT CLHEP ErrorLogger Exceptions HBookHepTuple HepTuple HistoHepTuple LinearAlgebra NameTrans PhysicsVectors RootHepTuple SRT_D0 STLUtility ZMutility cint-lite dspack f77 histoscope root

pkgs : CINT CLHEP ErrorLogger Exceptions HBookHepTuple HepTuple HistoHepTuple LinearAlgebra NameTrans PhysicsVectors RootHepTuple SRT_D0 STLUtility ZMutility cint-lite dspack f77 histoscope root

CINT CLHEP ErrorLogger Exceptions HBookHepTuple HepTuple HistoHepTuple LinearAlgebra NameTrans PhysicsVectors RootHepTuple SRT_D0 STLUtility ZMutility cint-lite dspack f77 histoscope root :

	@echo "$@"

CINT :

cint-lite :

CLHEP :

dspack : f77

ErrorLogger : ZMutility

Exceptions : ZMutility

HepTuple : CLHEP PhysicsVectors

HBookHepTuple : HepTuple

HistoHepTuple : HepTuple histoscope

RootHepTuple : HepTuple root

LinearAlgebra : ZMutility

PhysicsVectors : Exceptions ZMutility

SRT_D0 :

STLUtility :

%.mk :

% :

@echo "WARNING: unknown library ($@)!" 1>&2

PAGE
9

