D0 Restructuring Package

SIST FermiLab

August 2001

By Shaun Jude Diggs

Illinois Institute of Technology

Supervisors

 Dr. Pushpa Bhat

Abstract

The contents of this paper will describe the restructuring of D0’s Muon Detector online monitoring code called “MuoExamine”. The code is written in C++ and being revised in order to give its users and future programmers a more accessible and readable program. [image: image1]
Introduction
Fermilab, located in Batavia Illinois, is at the forefront of high-energy physics. It is the home of the Tevetron the world largest and most powerful particle accelerator. With a circumference of nearly 4 miles, the Tevetron gives high-energy physicists the ability to accelerate protons and antiprotons to energies close to 1 trillion electron volts (or 1TeV). FermiLab is also known for its groundbreaking discovery of the Top Quark in 1995. At the center of this discovery were two of Fermi’s major collision experiments D0 and CDF. The purpose of the two experiments is to observe and study very energetic proton and antiproton collisions in order to obtain a better understanding matter and its interactions. D-Zero, a three story high collider-detector, consists of several tracking chambers, a calorimeter, (solenoid and toroidal) magnets, and Muon detection systems.

WAMUS

WAMUS or Wide Angle Muon System is made up of 94 PDT chambers with over 6000 drift cells. These drift chambers are used to obtain a measurement of the momentum of the particle separate from the central tracking system. When a muon enters the chamber an electronic pulse given off. In a simple drift chamber, each drift cell contains a long wire that is stretched along the length of the chamber. The wire is held at negative high voltage (around 5 kV). The chambers are filled with a gas (mostly Argon) which provides a medium for the ionization of charged particles (muons). The ions drift (or shower) toward the wire and a pulse is sent down the wire. By measuring the drift time of each chamber, one may obtain the coordinates of the path in which the particle took through the cell. Using several layers of such chambers, one may obtain the particle trajectories.

FAMUS (MDT’s and FMSC’s)

FAMUS (or Forward Angle Muon Systems) contains 3 layers of both Mini-Drift tubes (MDTs) and 3 layers of Forward Muon Scintillation Counters (FMSC’s). Each MDT, smaller versions of WAMUS chambers, contains an ultra thin wire (50 microns) tightly stretched across the tube and operates with a fast gas mixture (mostly Carbon Tetra-floride). At 93% efficiency and a drift time of about 40 ns, the MDT’s have proven that they could withstand long-term radiation aging.

The figure above shows the three different (A, B and C) layers of MDT’s. Figures 4 and 5 show pictorials of the detector with some of the layers exposed. Figure 6 shows the full size detector.

[image: image2.wmf]

MuoExamine

 D0’s Muon Online Monitoring Software Program

Intro to MuoExamine C++ Code

After a collision of a proton and antiproton takes place in D0’s detector, a shower of subatomic particles is produced. These subatomic particles can be detected, measured (their energies and angles) and identified by D0’s personnel. The raw data from the detector (energy, distance, time, and angles) is taken in and recorded by D0’s hardware. The raw data is translated by D0’s software and is used for analysis. These software programs are usually in C++ and used by the control room personnel to interpret the raw data in real time. C++ Codes like MuoExamine examine makes this possible. So, to put it simply, MuoExamine is a C++ Code that is used by the D0’s control room in order to monitor the Muon hardware systems. I t is used as a diagnostic program for the electronics and detector subsystems. The raw data sampled by the MuoExamine code can be used by the control room personnel to pinpoint which hardware systems malfunctioning or simply which systems are turned on or off.

The D0 MuoExamine code handles the data acquisition for four subsystems. They are the MDT’s (Mini Drift Tubes), FMSC’s (Forward Scintillation Counters), CMSC’s (Central Muon Scintillation Counters) and PDT’s (Photo Drift Tubes). The MuoExamine C++ code is just one of many tools used by D0’s control room to analyze raw data and monitor hardware.

What does MuoExamine Code do? How does it work?

MuoExamine reads in raw data from D0’s hardware system and transforms the data into readable input (via graphs/histograms) with a few cleverly designed C++ pieces of algorithms. There are four primary functions within the MuoExamine code used for producing histograms from raw data (the unpacking of raw data, booking, filling and reset functions). These functions are present in all four-subsystem histogram methods. Explaining the booking method first is the first on the agenda. The booking method is the function member responsible for setting up the histograms itself. The booking function creates empty histograms along with a graph and its parameters. The histogram itself is usually set up in one of three ways: through Histoscope, ROOT or PAW programming. Anyone of the three programs allows you to at least view the raw data in one or two dimensions. Filling is actually a part of the function that actually takes the raw data, sorts it and puts each piece of data into its appropriate histogram. Finally, the Reset function is self -explanatory. This function resets or empties all of the histograms before the next run job is executed. The MuoExamine code as a whole handles about 2700 histograms.

Creating New Classes for MuoExamine Code

I. Main Purpose of separating classes

Firstly, one must understand why it was necessary to modify the MuoExamine C++ code by splitting the different subsystems into separate classes. For each subsystem, MuoExamine contained many lines of code for booking, filling and resetting (via functions, variables, declarations and definitions) inside of MuoExamine. This made MuoExamine rather difficult to read, access or maintain (meaning the change code for updating or upgrading purposes). Splitting the code into separate classes, firstly, makes the program easier to access (by the user) by isolating each subsystem to its own file. This, in turn, gives the user easier access to a specific subsystem’s code for maintenance (hence: easier maintainable code). The main code (MuoExamine) also becomes a lot shorter due to the removal of the subsystem codes. Instead of the long cumbersome code used to book, fill and reset each subsystem’s histograms, there are single line object oriented function calls in its place. Of course this makes the main code also easier to read and access because it is much shorter than it originally was.

Steps to Separate out Classes

Firstly, my supervisor and myself siphoned through the many lines of MuoExamine Code in order to isolate the booking, filling and reset functions. There were two codes separated out from MuoExamine: the MDT and FMSC histogram codes. The two codes were then put into their own class files and named appropriately. The task of separating the subsystem code from the main code proved to be somewhat difficult because some subsystem functions were scattered throughout the program. The next step was to create a header file in which all of the class public and private variables and functions are declared. The Header file is crucial to the C++ object oriented programming because it is the header file that must be included into any program before the members of that class can be used. The Source files, on the other hand, are used to implement the class members including functions and variables. Variables and or functions may are also initialized in the source file. After the header and source files were created, the new classes were included as new COMPONENTS in the D0 muo_examine package. Next the program was debugged. This required the code to be compiled and linked repeatedly. After several trials of debugging, I was able to successfully make a working executable with the newly implemented structure. Lastly, I had to test the output was and compare it with the output of the old MuoExamine. This involved using PAW, Histoscope, and ROOT to look at the histograms. The code is almost ready to be put into the new D0 RunII release.

Output Results of New Code

Sample Histograms from MuoExamine

[image: image3.png]Sa
Figure 1. Shows number of processed Mini Drift Tube evens and Octant Hit maps (shows hits per octant for A, B and C layers). Notice the first eight octants are located on the north side of the D0’s detector and the second eight on the south side of the detector.

[image: image4.png]
Figure 2. Fist graph shows the time in which a particular MDT crate registered a hit. The second graph shows the time in which each crate was hit. These sorts of graph are particularly important to the Control Room because of its useful information it provided. If you notice the gap in the second graph you can see that some channels (or possibly a board) are either turned off or has malfunctioned. The Control Room may use this data to fix the problem if needed.

[image: image5.wmf]

Figure3. Shows the FMSC (Forward Scintillation Counter) Hit multiplicity in the “A” layer. The Control room can compare these Hit distributions for each octant with expected / standard distributions to figure out if the FMSC detectors are functioning properly.

[image: image6.png]Figure4. Shows side view of the detector. In this picture you can see the central tracker systems, calorimeters, the toroid and the outer muon system comprising of the FAMUS and WAMUS systems.

[image: image7.png]
Figure 5. Show the detector in the last stages of assembly. Here you can see the outer layers B and C layers of the Muon System (FAMUS) in light blue, and the muon toroid system toroid in red.

[image: image8.jpg]

Figure6 is a photograph of the almost finished detector. In the center you can see the calorimeter surrounded by the Outer Muon System. To the far right of the picture is also a part of the Muon Tracking System.

Conclusion

The subsystem separation of the MuoExamine C++ code was a success. Yet, there are still a few pending revisions that have to be made on the code in the future. I have obtained a considerable amount of knowledge this summer, including advanced C++, Unix, more Paw Programming, Histoscope, Root and how to use the Emacs Editor.

Acknowledgements

I would like to thank the SIST committee for the opportunity of working this summer (Dianne Engram and Elliott McCrory). I would also like to thank my supervisor Pushpa Bhat for giving me the opportunity to work on MuoExamine Software algorithms and allowing me to learn more about D0 and C++ (including enrolling me into Fermi’s Accelerated C++ class). I would also like to acknowledge my fellow SIST interns who made this internship one of the most interesting thus far. I had a lot of fun this summer, but most importantly, I learned a whole lot in the process.

� EMBED Word.Picture.8 ���

[image: image9.jpg]_1058695544.doc
[image: image1.png]

