
“Using Embedded Linux Systems for the BTeV Online Trigger”
Dwayne Cambridge
Morehouse College
 Atlanta, GA 30314
05/21/01 – 08/03/01

Supervisor: Dr. Harry W.K. Cheung

Abstract

This paper deals with the study of the possibility to develop and use an embedded Linux processor farm to perform the Level 2 and Level 3 trigger for a proposed collider experiment at Fermilab, called BTeV. This involved learning about embedded Linux systems and gaining experience with them by using them in tasks related to the BTeV experiment. A simple calculator program was written to illustrate user interaction, via attached devices, with an embedded Linux system.

Introduction

Experimental particle physics seeks to answer many questions about nature. At present, the Standard Model describes much of the phenomena that are observed in the universe. Thus far all predictions are consistent with experiment. Symmetries and symmetry violations are crucially important physics phenomena. The BTeV High Energy Physics Experiment, proposed to run at the Fermi National Accelerator Laboratory in 2006, will study the matter/antimatter asymmetry in the universe. To do this asymmetry in particles/antiparticles containing the bottom quark will be studied. It is theorized that this asymmetry is need to explain why our present day universe consists of more matter than antimatter.

In the Standard Model, CP violation has its origin in the phenomenon of quark mixing. The CKM matrix describes Standard Model quark mixing. BTeV is a program designed to challenge the Standard Model explanation of CP Violation, mixing and rare decays in the bottom and charm quark systems. Exploiting the large number of bottom and charm quarks produced at the Tevatron collider, precise measurements of the Standard Model parameters will be made, along with an exhaustive search for physics beyond the Standard Model. BTeV is designed to make a fairly complete set of measurements on the decays of hadrons containing bottom and charm quarks so as to accurately determine Standard Model parameters or to discover fundamental inconsistencies that could lead us to an understanding beyond the model.

The BTeV Trigger

Real-time, multi-processor computing is needed to process scientific data in a High Energy experiment studying the matter/antimatter asymmetry of the universe. Colliding high-energy protons and antiprotons every 132 ns leads to 7.6 MHz of collisions with a 1.5 TB/s data rate. Only a tiny fraction, 1 in every 4000 to be exact, of these collisions will contain bottom quarks interesting enough to record onto permanent data storage. To pick out these signals BTeV employs an online trigger system that operates in 3 stages distinguished by the rejection ratio and the trigger processing time. The ultimate requirements of any trigger are to pick out the signal with the highest possible efficiency and reject as much background as possible in an unbiased manner. The Level 1 trigger can process data from the collisions every 132 ns because data from collisions is stored in a “pipeline” and analyzed by thousands of processors in parallel. The current BTeV proposal, which is undergoing an approval stage, uses processors for specific analysis tasks. In the current proposal the Level 1 trigger will use custom processor boards using about 500 FPGAs and 2500 DSPs. Further reduction of the data rate is achieved at the Level 2 and Level 3 trigger by use of a farm of 2000-4000 commercial PCs.

Fermilab has continuously operated farms of hundreds of PCs and SGIs over the last several years. Problems are generally related to power supplies, fans, and disks. The BTeV experiment will have much larger and faster real-time computing requirements than in previous High Energy Physics experiments. As such the demands of the real-time, multi-processor computing farms needed to process scientific data in the experiment may be better met by embedded Linux systems than by commercial PCs or specialized processors. The advantage of the embedded Linux system over commercial PCs is reliability and maintenance due to its easily replaceable processor modules. This would help keep downtime to a minimum since data taking occurs continually, 24 hours a day as long as the accelerator is running. Although the highest possible trigger efficiency achieved may not necessarily imply zero deadtime, it is a requirement set by BTeV that the deadtime be as close to zero as possible.

Such a farm may also be useful in parts of the Level 1 trigger system. Parts of the Level 1 trigger may benefit from the advantages of an embedded Linux system since such a system may be simpler with less custom processors and the trigger software may be more flexible in allowing the evaluation in real-time of multiple trigger algorithms. Thus, compared to more specialized processor boards the embedded Linux systems will allow a more flexible and easily modifiable system, thereby allowing a faster development cycle. This is important, as changes to the data processing code are often very desirable.

The competition

On joining the BTeV team this summer, my assignment was to assist in the study of the possibility to develop and use an embedded Linux processor farm to perform the Level 2 and Level 3 trigger. This was to be used as part of an Embedded Linux Journal contest that was entered to assist in public outreach at the lab. This involved learning about embedded Linux systems and acquiring experience working with them by using them in tasks related to the BTeV experiment. Their performance and ease of use was evaluated in this project. Since the BTeV experiment is only in its proposal and R&D stage the evaluation of the embedded Linux system was limited to a single board.

Two projects were done as part of this evaluation of embedded Linux systems. The first involved running the actual BTeV Level 1 Trigger code on the embedded Linux board to evaluate its performance and to write a program that could send real data to the embedded Linux board over a network connection and receive it on the embedded Linux board for processing. This, in essence, would test what a board in a farm would do in a real system.

The second, my primary focus this summer, was to write a simple calculator program using an LCD screen and keypad attached to the embedded Linux board. This illustrated the ease of use of attached devices to an embedded Linux system. Such a system could be used in the BTeV trigger to check and display the status of individual components in the FPGA and DSP farms. It was also an ideal project to learn about embedded Linux system development. Parts of what was learnt on this project were used in the BTeV Level 1 Trigger project described above.

Both projects used the Embedded Linux Journal contest kit. The contents of the contest kit are listed below.

· BlueCat Linux Development Kit from LynuxWorks
· Tri-M Systems MZ104 PC/104 Board

· On Board ZF Linux Devices' MachZ Chip and Phoenix BIOS in Flash

· M-Systems 8MB DiskOnChip

· MZ104 Cable Kit for connecting to peripherals

· MZ104-Utility Card GPS ready

· 32MB SDRAM SODIMM Module

· Trident 16-bit ISA SVGA Card

· SMC 16-bit ISA Ethernet Card

· ISA104-IO 3 slot 16-bit ISA bus passive backplane with PC/104 connector

· 50-Watt 5-Volt Power Supply (added)

In addition both projects also used the following:

· PC for host and development running a Linux distribution at Fermilab based on RedHat version 6.1.

· Matrix Orbital Corporation LK204-25 LCD with 25-key keypad interface

· PICOFAB 16-key membrane keypad connected directly to the center 8 pins of the LCD keypad connector

· 9-pin-to-9-pin serial cable to connect LCD to embedded Linux board

· Modified floppy internal power cable to supply +5V to LCD

· External hard disk enclosure to house LCD and to power LCD.

Project Development

The development of the calculator was simple since it was developed and tested first on a normal Linux PC with the LCD attached to the PCs COM2 serial port. The porting to the embedded Linux board was also easy after going through some of the demo examples provided in the BlueCat development kit and going through the excellent step-by-step manual provided with the contest kit. Learning how to develop and run on the embedded Linux board took only a few days including installation of the BlueCat development kit, connecting the hardware and trying most of the examples and booting methods. Most of the time was actually spent learning C and writing the calculator program itself.

Program Description

The goal of the program is to act as simple calculator that writes to an LCD screen. It performs the addition, subtraction, multiplication, and division functions using operator precedence where required. As input it accepts whole number integers and produces an output that results from any combination of +, -, *, and /. The program opens a serial port, associated with the LCD, for writing. If the port is not opened properly the program will print an error statement to the screen and will terminate immediately. If the port is opened properly the program then clears the LCD key buffer, and the LCD screen. It also places the cursor at position row 1 and column 1 and waits for the first key press. The program is now ready for input via the keypad consisting of operands and operators. As the user presses keys on the keypad the program stores the key presses into an array, then immediately writes the corresponding key press to the LCD screen without computing any results. Even though every key press is initially read in as a string, the program is able to differentiate between numbers and operators, and uses a built in function to convert the number strings to integers. Once the user presses the = key the program is signaled to stop reading in key presses and proceeds to compute the result. Since the program must handle any combination of +, -, *, and /, the program first searches for operator precedence. It does this by searching for the operators * and /in the Operators array. Once it finds these operators it computes the results, using the relevant operands, and stores them in an array. It proceeds to compute the final result using the Operators array, the Operands array and the results used from the previous * and / computations. If no operator precedence exists the program will compute a final result using just the Operator and Operand arrays. Once a final result has been computed it writes this result to the LCD screen and it either waits for the computation to continue, or waits for the user to start a new computation by inputting an operand, which subsequently clears the screen and discards the previous result. Otherwise, the user can continue the computation by inputting an operator (+, -, *, or /) followed by operands and operators after the printed result. As with a normal calculator, the user has the option to clear the screen and cancel a computation at any point with a press of the assigned clear key. One limitation of the program though, is the fact that it only accepts whole numbers as input because there is no decimal button on the keypad, however it can print a decimal result. A flowchart describing how the program works is shown in the Appendix A.

How to compile

Compilation is done using the BlueCat LynuxWorks development distribution Release 3.0 kit. Untar the compressed tar file calculator_demo.tar.gz in the demo area and proceed as with other demos, for example:

BlueCat:bash$ cd /BC3/demo

BlueCat:bash$ gunzip calculator_demo.tar.gz

BlueCat:bash$ tar –xf calculator_demo.tar

BlueCat:bash$ cd calculator

BlueCat:bash$ make all

How to compile for a normal PC

The program calculator.c was written in C for Linux only. To compile use the GNU C compiler, there are no libraries needed besides normal Linux system header files, for example:

gcc –O –c calculator.c –o calculator

It is designed to interact with a Matrix Orbital Corporation LK204-25 LCD with keypad interface and a 16 key PICOFAB keypad. Communication is via the serial port of the PC.

Instructions on how to run/operate the program
(1) Turn on the LCD and make sure the keypad is attached to the LCD and the LCD is attached to the serial port (COM2) of the embedded Linux board or PC

(2) On a normal PC make sure /dev/lcd points to the correct serial port, for example if using the COM2 port:

ln –s /dev/ttyS1 /dev/lcd

(3) Run by booting the embedded Linux board with the calculator.kernel and calculator.rfs, or the calculator.kdi. On a normal PC simply run the calculator executable.

(4) The message: `Ready’ should appear on the LCD screen and the program is ready to accept input. When the user begins a computation the `Ready’ message will disappear and the program will begin processing of the computation.

(5) When the User is finished with entering the computation he/she must press =. The result will appear on the following line.

(6) If the User would like to continue with the current computation he/she should just continue entering operators (+, -, *, /) and operands immediately after the printed result.

(7) If the User would like to begin a new computation he/she can either clear the screen, by pressing the C button, or enter a number immediately after the printed result and the program will automatically clear the screen and allow for a new computation.

(8) To end calculator sessions simply turn off the LCD and embedded Linux board, or control-c out of the program on a normal PC.

Conclusion

The development of an embedded Linux system was found to be quite easy since all the development work and testing was done on a normal PC. Since High Energy Experiments typically are run by hundreds of physicists and students who can only devote a fraction of their time on the experiments embedded Linux systems clearly offers a great potential for fast progress on projects needing this sort of hardware. Further info about this project can be found at the competition website (http://home.fnal.gov/~cheung/embedded-linux/). It is hoped that our participation in this competition will help foster an added interest from the general public in the lab and science as a whole. In addition the extra publicity garnered may lead to possible funding opportunities in the future.

Acknowledgements

I would like to extend a heartfelt thank you to my supervisor Dr. Harry Cheung for his guidance, instruction, and support throughout the summer. I would also like to acknowledge my alternate supervisor Dr. Mike Wang and my colleague Sharvari Dalal for their assistance. Special thanks to Nuha Elmaghrabi for the long hours spent helping me with my programming. Thanks also to Ms. Dianne Engram for her support. Finally I would like to thank the SIST committee for selecting me to be a part of this program.

References

Aitken, Learning C, SAMS, 1st edition, 1991.

Barr, Programming Embedded Systems in C and C++, O’Reilly, 1st edition, 1999.

Harbison & Steele Jr., C A Reference Manual, Prentice Hall, 3rd edition,

 1991.

Kantaris, Learning to Program in C, Bernard Babani, 2nd edition, 1993.

Kernighan & Ritchie, The C programming Language, Prentice Hall, 2nd edition, 1988.

LaMothe, Ratcliff, Seminatore & Tyler, Tricks of the Game Programming Gurus, SAMS, 1st edition, 1994.

The BTeV Collaboration, BTeV Proposal, Fermilab, 1st edition, 2000.

Appendix

[image: image1.jpg]

Embedded Linux Board

[image: image2.jpg]

LCD Screen and Keypad

[image: image3.jpg]

LCD Screen and Keypad attached to the Embedded Linux Board

[image: image4.jpg]

The Crew (from left to right): Sharvari Dalal, Dr. Harry Cheung, Dwayne Cambridge, and Dr. Mike Wang.

[image: image5.png]

_1058210883.bin

