Testing, Installation and Analysis of the TDC (Time to Digital Converter) Modules to be used in the CDF-COT detector.

[image: image20.png]
[image: image1.png]
[image: image17.png]Ricardo M. Quintana-Castillo

 Department of Electrical and Computer Engineering

University of Puerto Rico, Mayagüez Campus.
Project Supervisor: Dr. Ting Miao

Fermi National Accelerator Laboratory

CDF-COT Group
Abstract

The increased luminosity expected for Run II of The Tevatron Collider at CDF, requires an increase in the number of beam bunches stored in the accelerator. This “multi-bunch” operation mode requires the use of TDC (Time to Digital Converter) modules, which are capable of handling the shorter times that will be involved in Run II. This paper describes the testing, installation and analysis of the TDC modules in the summer of the year 2000. The information is based on the results obtained by the “TDC Checkout Shifters Group”, which is part of the COT (Central Outer Tracker) group. Also, a discussion and a detailed description of the proceedings taken place are presented here.

Introduction

To increase the Collider’s luminosity without a drastic increase in the number of interactions per crossing, more beam bunches will be used. This method reduces the time between beam crossings. Since this interval of time will become shorter, TDC (Time to Digital Converter) modules are needed. Some of the features of the TDC modules are multi-hit and leading/trailing buffering, and pipelined data acquisition system.

In the months of June and July of the year 2000, constant TDC module testing was achieved by the author under the supervision of Dr. Ting Miao from the CDF-COT (Central Outer Tracker) Group. The results obtained from the tests show some patterns on how the TDC modules are failing and the actions taken to try to fix the problems.

For the testing of all these TDC modules, the COT Test State Manager program, which is part of the Run Control program, was used. Run Control is a very complex program which incorporates the most important tests and procedures for the CDF data acquisition systems (DAQ). In the course of the summer, the testing resulted in the discovery of some bugs and inefficiencies with the COT Test.

One of the most important aspects in accomplishing TDC module testing is to know how to reproduce the testing perfectly, in order to minimize the time spent and to obtain accurate data in the results.

Collider Detector at Fermilab (CDF)

The Collider Detector at Fermilab (CDF) is a general-purpose experiment for the study of proton-antiproton collisions. The evolving sensitivity of the detector has made possible the discovery of the “top quark” and an accurate measurement of its mass.

The stated goal of the Tevatron Run II is the accumulation of 2fb-1 at (s = 2.0 TeV, using luminosities up to 2x2032 cm-2 s-1. This modest increase requires the upgrade of the CDF detector in its data acquisition system (electronics and software infrastructure).

The COT (Central Outer Tracker) Chamber

For Run II, tracking will be done with an open cell drift chamber, the COT (Central Outer Tracker), covering radii between 44 and 132 cm (See Figure 1). The design goal of the COT is to reproduce the functionality of past “runs”, while making use of the smaller drift cells and a fast gas to limit drift times to less than 100 ns. The basic drift cell will have a line of 12 sense wires alternating with sharp wires every 3.8 mm, running down the middle of two gold-on-Mylar cathode planes which are separated by ~2 cm. Four axial and four stereo super layers will provide a 6 measurements between 44 and 132 cm, requiring a total of 2,520 drift cells and 30,240 readout channels. The COT is readout using pipelined TDC modules, which are the standard for CDF II wide chamber systems.

[image: image2.png]
FIGURE 1. Cross Section of the COT Chamber.

How does it work?

When the collision of proton-antiproton occurs, a “shower” of particles spreads across the detector’s chambers. When one of these particles travels through the COT chamber, it ionizes the atoms of the gas already present in the chamber. The particle is able to drift through the chamber in a curved path because of the electric field present (curved paths are more easily reconstructed than straight paths). When the gas is ionized, those ions produce a voltage in the wires, thus identifying the trajectory of the particles using timing information. With the information gathered from the DAQ system, not only the trajectory of the particle, but also the identity and properties of the particle can be determined.

Readout Electronics and the TDC module

Pulse amplification, shaping and discrimination are carried out on the chamber face using an Amplifier/Shaper/Discriminator (ASD) chip developed at the University of Pennsylvania (See Diagram in Figure 3). The differential discriminated signal is carried off the chamber face to TDC boards (See Figure 2) mounted in VME
 crates.

The ASD chip provides the analog signal processing between the chamber and the TDC. It is also designed to encode the magnitude of the charge deposited in the chamber cell in the trailing edge at the discriminator output pulse. The leading edge of the discriminator output indicates the time of arrival of the primary ionization and the trailing edge (the pulse width) is logarithmically related to the total charge deposited on the sense wire.

The signals from the ASD boards are sent differentially to the TDC modules via a combination of coaxial and ribbon cables. A total of 315 TDC modules will be allocated in the 17 VME crates on the end-wall detector. The code name for the TDC modules is DT96TDC, which is a 96-channel VME module that uses a custom chip named JMC96. This chip has a 1 ns timing, “multi-hit” capabilities, and L1/L2 storage buffers. The TDC module contains standard VME interface receivers for 96 signals, a Xilinx based register file, and a digital signal processor
.

The design of the module is flexible to allow different readout options using a 32-bit word to encode board/channel ID, the time of the leading edge and the width. The output of the zero suppression is loaded into an on-board FIFO (First-in-First-out) chip for the transmission via the VME Readout Controller (VRCs) to the 1st floor memories, the VME Readout Buffer Modules (VRBs).

[image: image3.jpg]FIGURE 2. View of the TDC card.

Each TDC crate contains 18 or 19 TDC cards, a CPU crate controller and a
”TRACER”. The Tracer is a system interface module to provide an interface to the Trigger System Interface and the Master Clock. It also provides a path for sending the event data to the VME Readout Buffer.

[image: image4.png]
FIGURE 3. COT Front End and Trigger Layout.

Testing TDC modules

Running Run Control’s COT Test

In order to run the necessary software to test the TDC cards a b(dau3(account is needed at CDF. This is the UNIX server designated for online code developing. For the COT group a generic account is used which goes by the login name of “cdf_cot”. The ideal way to run the whole test is to run two separate windows (either X-Windows or UNIX shells), both connected to the same account. One window should be dedicated for the online display of the status messages received from the “front end” electronics. This requires to login to a VME crate’s CPU (Central Processing Unit) or microprocessor that should be running VxWorks operating system. Also, there should be a reload of the crate before even logging in. The command used is:

%vxreload cratename [PRESS RETURN KEY]

The crate name usually starts with the prefix b(and follows with the string “cot” and the crate number. It should look something like this: “b(cot2(”. After reloading the crate’s CPU then a login can be done using the following command.

%vxlogin cratename

[image: image18.png]cratename> this is the prompt you get.

There is a program running in the VxWorks environment, which is called VISIONdemo. The program can be started using the name as shown before (it is case sensitive). By using this program, the person testing the TDC cards has the ability to check the status of the cards in the VME crate. That means that the reading of all the TDC cards by the crate can be done successfully. If some of them fail to be displayed (option number 8 of the VISIONdemo menu), then the card is cataloged as having a “VME open error”, which is nothing more than failing to recognize the card available in the current slot. This is sometimes a usual error that is obtained in the testing of old TDC cards (with the old vias
). After checking every single card, the program can be exited by returning option “(” (zero) on the prompt.

Simultaneously, in the other window the Run Control program can be started using the following commands:

[image: image19.png]%smartGUI
this command is case sensitive.

However, if the cdf_cot account is not being used, the “FER” software package must be set up using the following command:

%setup –r ~/fer fer
if a private version should be used.

%setup fer
if the standard version should be used.

When the Run Control program starts completely a window like this should be displayed:

[image: image5.png]
FIGURE 4. Run Control’s main window.

In the top menu, the ENABLE option should be selected and in the submenu the COT Test should be selected. The COT Test State Manager should look something like this:

[image: image6.png]
FIGURE 5.1.

[image: image7.png]
FIGURE 5.1 & 5.2. COT Test State Manager GUI

A partition should be selected to reserve the space in which the tests are going to take place. All the tests described in this paper are based on “software” partition runs. The reason for this is that the TDC module testing is a simulation of the actual hardware partitions that shall be used later on. The first 4 partitions are reserved for hardware, so any other partitions could be used. The partition selection window should look something like this:

[image: image8.png]
FIGURE 6. Partition Selection.

Once a partition is selected, a run type setting should be selected in the PARAMETERS option in the top menu. Usually, if the test is being done in a test crate like crate number 20 (which is located at the moment in the “clean room” at the Assembly Building at CDF), the test name would be “test_tdc”. If the testing is being done in the “pit” (which is directly in the crates connected to the COT), then a particular name for the test should be selected
. The crates are usually named with the following string: “COT_EAST_17”. The only two things that would change from crate to crate are the location of the crate (EAST or WEST) and the crate number (from 0 to 19).

[image: image9.png]
FIGURE 7.1.

The settings of the run type selected can be modified in the Edit-or-View-Run-settings option (FIGURE 7.1). In the window displayed, the only concern should be if every single parameter is dealing with software simulation and testing. The following should be always checked out as follows:

[image: image10.png]
FIGURE 7.1 and 7.2. Selecting and Editing Run Type Configuration.

Usually, the crate parameters should be edited. This can be done by selecting the appropriate crate name in the list on the bottom-right part of the current window and pressing EDIT in the buttons on the middle part of the window. A window with the crate parameters should be displayed:

[image: image11.png]
FIGURE 8. Crate settings.

Some of the options above have the following meanings and can be edited by the user:

· Extra 0: task delay (should always be 10).

· Extra 1: pulse width (should be set to something around 30).

· Extra 2: calibration value (10 COT Calibration, 11 TRACER/TDC).

· Extra 3: Test Clock slot.

· Extra 4: Level 2 buffer to be used.

· Extra 5: Number of Level 1 rejects after calibration enable.

· Extra 6: Number of Coarse settings.

· Extra 7: Number of Fine settings.

The number of TDC cards to be tested can be edited in the “bank set” options. To avoid confusions, one small detail must be discussed. The “offline people” count things from zero and forth. On the other hand, the “online people” number things starting from 1. So the bank ID should read one more than the crate number actually in use. Once everything is set, the user can save the changes temporarily by pressing save in the file menu or also the changes can be saved to database by entering a special password on the “change database” option in the file menu.

With all the parameters set, the user can start the test by pressing the “partition” and then “setup” buttons in the GUI (Graphical User Interface). The user can choose from 4 different tests: Single TDC Test, Full Test, XTC Test and the XFT Test. Usually, for TDC testing the “Full Test” is chosen. This is because the test is more complete (since it tests the 96 channels available in the TDC module) and the results obtained are more accurate than the ones in the “Single TDC” test. The other test usually done is the XTC test, which tests the functionality of the XTC
 cards attached to the TDC cards.

For the Full Test, the results are stored in files that follow the following format: “b(cot2(.card(.txt”. A file for each card is created. If the test is being done in the cdf_cot account the files are usually stored in the “tdc_out/” directory. The results are copied into the database using the following command:

%copycard cardfilename

ANALYZING THE RESULTS

The work done by the author consisted of testing the TDC cards and determining what the errors in the files signified and file the information for future reference. Also, the TDC cards had to be shipped back either to the manufacturer (Michigan) or to the PREP department in the Computing Division at Fermilab where some repairing would be done. In collaboration with Jim Kraus from the University of Illinois at Urbana Champagne, the author tested a number of old TDC cards that were installed in the detector. These cards were having failures before the summer. The instability of the cards drove to the conclusion that these TDC cards were not to be kept in the upper crates of the detector. Dr. Miao decided to remove these TDC cards from these crates, test them and then install them in the lower crates. Hopefully, this action will save a lot of time in the future if these TDC cards fail, because they will be more accessible. For the upper crates the use of a “genie” or a man lifter is necessary and that results in a time consuming operation.

The testing of the TDC cards removed was made in the “clean room” because the test crate available there is considered more stable than the ones in the “pit”. A total of 122 TDC cards were tested and 82 passed the test (the possibility that a TDC card was tested more than once exists). The most common errors encountered in the tests were the following:

· VME crate map failure.

· VME open error.

· Single Channel Failures (bad widths, bad start-time, unpaired leading edges, second hits, missed events, bad rms, etc.)

· Register R/W Failures

A display of the results of a TDC card tested through the full test option would look like this:

[image: image12.jpg]
FIGURE 9. Output of Full Test done to a TDC card.

In the example above the TDC card appears to pass. The way to know it in a rapid manner is to look either for the message “BOARD PASSES” or “BOARD DOES NOT PASS!!!” at the beginning of the file. If the board passes, it is taken out from the test crate and installed into some available crate in the detector. On the other hand, if the board does not pass, the results should be analyzed for more specific results.

When obtaining 2nd hit errors, the major concern is that it should only have one hit at the time. A 2nd hit signifies that some sort of noise was present at the time of testing, and that is not desired in the operation of the TDC card (In a list like the one before the values for the #2nd hit list should be zero). The noise could be caused by many reasons, however some of them are thought to be voltage problems. Also, the “missed event error” is encountered when the events per channel go over or below two thousand. This error reflects anomalies with the operation of the TDC card. This is a very important factor that should be working perfectly, since a record of all events taking place in the detector is expected at run time.

One of the functions of the TDC module is to transform the pulse signal obtained from the ASD into a digital signal that looks something like this:

[image: image13.wmf]

FIGURE 10. Digital Pulse Representation, which provides a graphical view of the timing information gathered by the front-end electronics.

When obtaining the data from the TDC, the width (or waste) produced should appear to be in a certain margin. According to the parameters imposed by the software configuration discussed before, the width should be around the value of 30. Also, obtaining an rms value around 0.5000 is desired. The information gathered from the TDC cards (timing information) is very important since its t0 value is vital for the reconstruction of the particle’s trajectory. This is done using the fact that the drift velocity of the particle in the electric field is constant. This way the distance (hence the path) of the particle with respect to the trajectory of the original particle in collision can be calculated.

The VME open failures are sometimes related to buffer chip “blowouts”. This is a common problem encountered in the old TDC cards (with older vias) caused by poor manufacturing, not by of design imperfections. This problem can be determined if the resistance in the main resistor of the board has a value different than ~3 (. This problem should be solved with the use of a new protective diode board that is being added to the new TDC cards shipped from Michigan University.

There are two different types of TDC cards used in the CDF detector: the LVDS (Low Voltage Differential Signaling) TDC cards and the ECL TDC cards. The first type of cards will be installed for the COT chamber tracking system and the other type will be used in the Muon detector. The XTC Test mentioned before can only be done on the LVDS TDC cards because only those have the XTC mezzanine cards attached. The XTC card is important in the XFT triggering process, which is not discussed here in this paper
. When getting errors on the XTC tests, the solution is to reconnect the mezzanine card or replace it with a different XTC card.

FIXING THE BUGS

On the course of the summer, Dr. Ting Miao encountered various deficiencies and problems with running the COT Test. It was the author’s job to study carefully the code of the Run Control Program to try to detect the source of those problems. The first thing that was fixed was an error in the transition between the XTC tests and the Full Test. The problem was that even when the transition appeared to have succeeded from XTC Test to the Full Test, the XTC Test would still be acknowledged. This was a simple but painful inefficiency that had to be fixed, because those tests were being run and they should be working consistently.

With the help of Dr. Ting Miao, Elliot McCrory and Arnd Meyera the author was able to detect were the source of the problem was. Before that, careful analysis of the code was made. It is formed by a combination of Java Language code, which is used for the GUI and State Manager, and also C Language code, which handles the actual tests and procedures with the hardware. There was a particular file that was analyzed carefully, which was the “COTTestStateManager.java”. This java class is a subclass of the “stateManager” class, which is a “template” of what the derived state managers should contain. In short the stateManager class declares most of the “state transition elements” and adds them to the GUI map itself. Here it is an example of the code that does this:

FIGURE 11. stateManager.java file (FER package).

Another functionality of the stateManager class is the ability of sending those messages and communicating to the C code functions and the actual hardware. This is all accomplished by using the SmartSockets
 package, which works as a translator between different platforms. This messaging procedure is done in the Java platform by the following class:

· public static class MessageSender extends MultiAction{…}

There are also other classes and methods that help the messaging tasks to be fulfilled. In the COTTestStateManager class declares a method called:

· public void setupStatesAndTransitions()

This method sets up the transitions and states that are particular to the COT Test. It uses the “makeTransition()” method and the “makeState()” to initialize the following:

FIGURE 12. COTTestStateManager.java file (FER package).

As you could compare with the Run Control COT Test pictures shown before, the strings entered here are the ones displayed in the transition buttons in the GUI. After these transitions are initialized, they become available to the clients through the following lines:

FIGURE 13. COTTestStateManager.java file (FER package).

The code above uses the “PairMessageSender(…)” class to initialize some new objects and communicate using each particular transition created before. The strings used (Example: “XTC_Test”) are standard for the communication between the Java code and the C code. These strings are declared in the FER.h header file, which contains most of the function prototypes and variable declarations for the FER package. After analyzing both files and trying to match every single message, the source of the problem appeared to be clear. It was a simple mistake, however it was causing all that trouble. The error was that in the COTTestStateManager class the string in the following line was wrong:

· activ.add(new PairMessageSender(“Full_Test”,1));

The line above should read instead:

· activ.add(new PairMessageSender(“All_TDC”,1));

This comes from the declaration of the string in the FER.h file:

FIGURE 14. Changes in the FER.h header file.

After adjusting the string in the Java code back to “All_TDC” everything worked fine. Another thing developed by the author is a method to determine which TDC cards passed without having to go through all the trouble of opening every single output file there is. This is also a time consuming task that had to be done after every test. A lot of the time was invested in studying the code and figuring out a way to communicate back to the COT Test State Manager and get those messages displayed in the GUI. However, because of the lack of time available to do such a task (this project was started in July) a not so fancy, but effective method was implemented. Arnd Meyera suggested that this should be done with a package called Merlin, which could be used to receive the messages from the “front end”.

Mr. Marco Mambelli, from the CDF-QIE staff, had implemented a similar thing with the Merlin package to receive messages from the QIE calibration process. He collaborated with the author in the development of the code for the COT Test display. Mr. Mambelli suggested I modify the functions he had already written for the QIE calibration process, since the idea was similar in nature.

First, a generic function was done without using the structure format that Mr. Mambelli had suggested. However, he said that this would not be very efficient. The reason was that due to the sending of messages individually to the function written (instead of a stack), the network traffic would be affected. The final changes could be summarized in the following:

· Gathering the information necessary from the TDC cards.

· Create a “linked list” which would store the information for all the cards.

· Successfully allocate the memory for the linked list and free it efficiently after the information is used.

· Implement the messaging from the “front end” and the Merlin GUI.

The following files were edited: TrackTest.c, FER_mess.c, FER.h and cdf_fer.msg. In the first one the structure variable is created and the memory is allocated and freed (FIGURE 15). Also, in the function “int TrackTest_tracerCheckTDC(…)”, the linked list was passed as an argument in order to add elements with the information of each TDC card (FIGURE 17). The adding and deleting of elements was also implemented in the TrackTest.c file in the functions AddListElement(...) and removeListElement(…) respectively (FIGURE 16). In the FER.h file, the function prototypes for the functions were edited and the structure format for the information was declared (FIGURE 18). In the FER_mess.c file (FIGURE 19) the FER_summaryMess() function was edited with an extra condition block, which sends the messages for the COT Test. In the cdf_fer.msg file the format of the message to be displayed in the Merlin GUI was added (FIGURE 20). For further understanding of how the Merlin package works, the documentation can be found at the CDF-Online page at http://www-b0.fnal.gov:8000/merlin.

FIGURE 15. Creation of linked list in the TrackTest.c file.

FIGURE 14. Adding Elements to the Linked List (TrackTest.c file).

FIGURE 16. Functions adding & removing the elements to the list

FIGURE 17. The actual adding of elements in the TrackTest.c.

FIGURE 18. Structure definition and Function prototypes added to the FER.h file.
FIGURE 19. Sending messages through Merlin in FER_mess.c

FIGURE 20. Sets up the display of the messages in the Merlin package.

At the moment of writing of this paper, the code compiled perfectly. However, the program itself did not perform the messaging tasks as expected. Hopefully, the problem shall be fix by the project supervisor.

CONCLUSIONS

The TDC module testing is an essential job that has to be done by the COT group to meet the design requirements of the CDF Detector. The consistency and efficiency of this work shall help the CDF staff and Fermilab to finish by the March-2001 deadline. As far as the tests went this summer, the old TDC cards presented many problems. However, the new TDC modules (with new buffer chip protection, good vias, etc.) look promising and hopefully they will do the work when the accelerator starts running. The everyday testing of TDC cards showed the need for very efficient software. This is why software debugging of programs like COT Test State Manager, should be accomplished. This program still has a lot of areas to improve. Hopefully, the staff at the CDF detector will follow the work started by the author.

REFERENCES

B. W. Kernighan, D. M. Ritchie. The C Programming Language. Second Edition, 1988.

J. Elias et al., “Time to Digital Converter Module for Run II of the Fermilab TeVatron Collider-System and Performance Requirements”, November 1994.

M. Kelly. “TDC 101”, University of Michigan. July 29, 1998.

P. Linden. Just Java2, 4th Edition ©1999 Sun Microsystems, Inc.

“The CDF-II-Detector’s Technical Design Report (TDR)”. Chapter 4: Central Outer Tracker (COT), November 1996.

“The CDF Online Computing Page”, http://www-b0.fnal.gov:8000/
“The TDC-Checkout Shifter’s Report”, CDF-COT meeting June 21st & July 19, 2000.

APPENDIX

[image: image14.jpg]
[image: image15.jpg]
[image: image16.jpg]

 idle = makeState(IDLE_STATE, (State) null);

 start = makeState(START_STATE, (State) null);

 error = makeState(ERROR_STATE, (State) null);

 setErrorState(error);

 // Transitions

 reset = makeTransition(RESET_TRANSITION);

 abort = makeTransition(ABORT_TRANSITION);

 abortReset = makeTransition(ABORT_RESET_TRANSITION);

 respar = makeTransition("Partition");

 partn = makeTransition(PARTITION_FROM_FILE_TRANSITION);

// ==== Create all the possible states ====

 ready = makeState("READY", (State) null);

 done = makeState("DONE", (State) null);

 calibrating = makeState("CALIBRATING", done); //Fall-through to DONE state

 scope = makeState("Looping", (State) null);

 setErrorState(error);

 // ==== Create all possible transitions ====

 setup = makeTransition("setup");		// , 3, 4);

 activ = makeTransition("Full Test"); 	// , 3, 7);

 single = makeTransition("Single TDC"); 	// , 1.5, 7);

 xtc = makeTransition("XTC test"); 	// , 4.5, 7);

 xft = makeTransition("XFT test"); 	// , 4.5, 7);

 loop = makeTransition("Scope loop"); 	// , 4.4, 5);

 end = makeTransition("More tests?"); 	// , 1.5, 5);

 activ.add(new PairMessageSender("All_TDC", 1));

 activ.add(new NoWaitMessageSender("/...", "Activate"));

 xtc.add(new PairMessageSender("XTC_Test", 1));

 xtc.add(new NoWaitMessageSender("/...", "Activate"));

 xft.add(new PairMessageSender("XFT_Test", 1));

 xft.add(new NoWaitMessageSender("/...", "Activate"));

typedef struct COTList{

 int slot;

 int MICH_ID;

 struct COTList* next;

}COTTestList;

.

.

.

COTTestList *AddListElement(COTTestList *List, int slot, int MICH_ID);

int removeListElements(COTTestList *List);

//===

// MERLIN MESSAGES FOR COT-TRACKTEST - RICARDO QUINTANA 7/11/2000

// updated 7/12/2000 and 7/13/2000

-m COT_RESULT_MSG 	\

 -s S 			\

 -t < Board in slot %d and MICH ID: %d PASSED!!! >

//==

int FER_summaryMess(char code, void* data) {

.

.

.

if (code == GMSG_COTTEST_SUMMARY) {

 COTTestList* p;

 p = (COTTestList*) data;

 MLencodedMessageCreate ((&msg, FERML_COT_RESULT_MSG, 0, 0));

 while (p!=NULL) {

 MLencodedMessageSetArgs ((&msg, FERML_COT_RESULT_MSG, p->slot, p->MICH_ID));

 err = MLmessageStackPushEncoded(stack, msg);

 p = p->next;

 i++;

 }

 MLencodedMessageDestroy (msg);

 mlType = 's';

 }

int TrackTest_cotTest() {

.

.

.

COTTestList *List;

.

.

.

 List = (COTTestList*)malloc(sizeof(COTTestList*));

.

.

.

 FER_summaryMess(GMSG_COTTEST_SUMMARY, List);

 if(removeListElements(List) != 1){

 printf("ERROR: LIST NOT DELETED!!!");

 }

	

int TrackTest_tracerCheckTDC(…){

.

.

.

if (PASS){

fprintf(fp,"BOARD DOES NOT PASS!!!!!!!!\n");

} else {

fprintf(fp,"BOARD PASSES.\n");

List = AddListElement(List, slot, c_int);

}

.

.

.

COTTestList *AddListElement(COTTestList *List, int slot, int MICH_ID){

 COTTestList *p = (COTTestList*)malloc(sizeof(COTTestList*));

 p->slot = slot;

 p->MICH_ID = MICH_ID;

 p->next = List;

 List = p;

 return List;

}

int removeListElements(COTTestList *List){

 COTTestList *temp;

 temp = List;

 while(temp != NULL){

 List = temp->next;

 free(temp);

 temp = List;

 }

 return 1;

}

/* -----> The following is for TrackTest */

#define MESSAGE_ALL_TDC "All_TDC" /* ExpertData */

#define MESSAGE_SINGLE_TDC "Single_TDC"

#define MESSAGE_SCOPE_LOOP "Scope_loop"

#define MESSAGE_XTC_TEST "XTC_Test"

#define MESSAGE_XFT_TEST "XFT_Test"

#define MESSAGE_TDC_SLOT "TDC_slot"

#define MESSAGE_TDC_CHAN "TDC_chan"

#define MESSAGE_PULSE_DELAY "pulse_delay"

#define MESSAGE_PULSE_WIDTH "pulse_width"

� EMBED MSPhotoEd.3 ���

� EMBED MSPhotoEd.3 ���

� VME bus (Versa Module Europa) is a flexible open-ended bus system which makes use of the Eurocard standard. It was introduced by Motorola, Phillips, Thompson, and Mostek in 1981. VME bus was intended to be a flexible environment supporting a variety of computing intensive tasks, and has become a very popular protocol in the computer industry. It is defined by the IEEE 1014-1987 standard.

� For more information refer to the author’s presentation available in the Appendix.

� Vias are the “connectors” between all the layers of the circuitry of an electronic board.

� For the tests done in the detector, a test clock must be inserted manually in the crate before the test is done.

� XTC stands for XFT Transition Card.

� XFT stands for Extremely Fast Tracker.

� SmartSockets is a commercial package.

_1025590108.bin

_1025590254.bin

_1026130458.bin

_1026130566.bin

_1025590142.bin

_1025589908.bin

_1025590056.bin

_1025589811.bin

_1025517803.doc
[image: image1.png]

