

Harvesting SVXII Detector Assembly Files from Remote Web Sites

A Unix Implementation

using Lynx and Perl

Fermi National Accelerator Laboratory

[image: image2.png]

Tod Pascal

Lincoln University, PA

Supervisor: Dr. David Ritchie

Summer, 2000

Abstract

This paper describes the process used to obtain files from remote web sites and upload these files into the Silicon VerteX Detector assembly tracking DataBase (SVXatDB). The tools and methodologies are explained.

Introduction

High Energy Physics is the science concerned with the study of the fundamental nature of matter. It is used to provide an understanding of the physical laws that govern the universe. Physicists have been conducting research in the field of high-energy physics since the earliest times. Experiments have revealed the structure of the atom with its nucleus and orbiting electrons. However present-day research focuses on the composition of individual particles inside the nucleus. It studies their properties and the way in which they interact.

At Fermilab research is conducted in high-energy physics by colliding beams of protons and antiprotons (at speeds approaching the speed of light) in a particle accelerator. Accelerators themselves only serve to create the high-energy collisions. A detector is used to recognize different particles and make certain measurements, such as momentum and energy. One of the detectors is called the CDF (Collider Detector at Fermilab). It is made up of all kinds of devices that are used to measure the positions, energies, momenta, and types of particles.

CDF contains a silicon-based detector known as the SVX (Silicon Vertex Detector). This detector contains over 4,000 silicon-strips. Each strip contains 128 channels, which store and digitize particle positions as they traverse the strip.

The SVXII Detector is composed of 3,168 readout chips, 720 sensors, 180 ladders, and 3 barrels. Because of these large numbers it was decided that a database (SVXatDB) was needed in order to track the assembly of the detector. The database is used to maintain a record of specific component placements and "as built" characteristics (David Ritchie).

Due to the nature of this project, which is rather large and involves participation from many groups and countries, there is a need to collect the detector component assembly information done by each of these groups and to provide the information collected to whomever may need it. For this reason, the Internet and the World Wide Web are the main tools for collecting the information and providing it.

Background

The SVXatDB runs on a Sun Solaris v26 operating system (a Unix based operating system developed by Sun Microsystems) (Knoch and Wood, 19). The database itself is accessed through a commercial program called Matrix (from Matrix One) that provides the Graphical User Interface (GUI). Oracle is the underlying, relational database. The database is used to track over 25,000 separate objects.

 The Sun Solaris OS, Matrix and the Matrix Query Language (MQL) provided the ideal environment for accessing the database at a low level (underneath the GUI provided by Matrix). Perl was the chosen programming language due to its adaptability, functionality and effectiveness in dealing with text, which comprises the bulk of the information stored.

Tools

1. Perl - Practical Extraction and Report Language

All of the scripts that access the SVXatDB are written in Perl. This is a programming language invented in 1987 by Larry Wall. Wall himself describes Perl as "an interpreted language optimized for scanning arbitrary text files, extracting information from those text files, and printing reports based on that information". Perl programs can run on Unix, Windows NT, Macs, DOS, and other types of computers. Along with being portable, Perl is useful because it is fast, complete, concise, flexible and free (Christiansen and Schwartz, 10).

2. CVS

All files related to the implementation of the SVXatDB project are stored and maintained in a version control system called CVS. Examples of these files include Perl scripts, HTML files, libraries, Make files, and log files. CVS is an extremely useful tool, because it records the versions of the source files and stores all files in a centralized "repository". Project members are never allowed direct access to any of the files in the repository. Instead copies of the files are extracted (using CVS commands). This ensures that working source code is protected and managed so that it can be developed and extended without risk of loss.

3. Matrix

Matrix is a commercial program developed by Matrix One that uses a GUI and a database to provide the user with access to the data. In addition, Matrix provides a script interface called Matrix Query Language (MQL). Matrix uses Oracle as the underlying database (Matrix from Adra, 10). Further, it is object oriented in approach, treating data in units of “objects” each with a particular type, set of attributes, relationships and states. Matrix has many advantages. It allows changing of objects, attributes, and workflow relatively quickly without unloading and reloading data, and it allows the storage of files behind any object in the database.

4. Oracle – the underlying relational database
Oracle is a relational database management system that is noted for its complexity, adaptability, reliability and power. It is a relational database. It’s speed and ability to handle large amounts of data efficiently makes it well suited for a project of this type.

5. Emacs - text editor
Emacs originally was an acronym for Editor MACroS. This Unix based editor was chosen because of its availability, its user interface (which can be at first intimidating, but proves to be well suited for most projects) and its functionality, which supports programming. It contains a GUI and supports the standard mouse, yet retains the classical Unix keyboard-oriented features where commands are entered as hot-keys.

6. Lynx - v2.8.3
Lynx is a World-Wide Web browser for use in browsing the web in text mode. It is therefore useful as a way to “surf” the web via command procedures and programs such as Perl. More recent versions support the latest HTTP protocol (1.1). It was this fact, along with its lightweight features that made it a good candidate for this project.

Primary Objective

The aim of my summer project was to write a program that harvest files on remote websites, which were related to the assembly of the SVX detector. Particular web sites were located and the files (sometimes in multiple sub-directories) were downloaded to a temporary disk space. The files were then uploaded into the SVXatDB under the correct objects. The harvesting is needed because there are a number of web sites at remote institutions that have files that describe the components of the CDF SVXII database as it was built. These files must be archived in a place that preserves them for the lifetime of the detector.

Tasks of the Major Project

The tasks that the program had to do were:

1. Access the remote web site.

2. Determine the files on the site that were applicable.

3. Download the required files.

4. Check in to the database the files. In doing so, name them in a way that is compatible with the nomenclature of the database.

The tasks were successfully achieved for three different collections of files: Hybrid Travelers, Wafer Maps and the Ladder Alignment – Layout files.

Project Scope

On each of the three web sites that were harvested, there were hundreds of files (in multiple subdirectories), though not all were relevant to the project. Below is a table detailing the composition of these sites.

	URL
	Relevance
	Total Files
	Relevant Files
	Download Size

	http://www-cdf.lbl.gov/svxii/Hybrids/Travelers/
	Hybrid Travelers
	500
	450
	175 Megabytes

	http://cdfsg6.lbl.gov/~igv/svxmaps.html
	Wafer Maps
	819
	723
	25 Megabytes

	http://svxiiint01.fnal.gov/
	Ladder Alignment – Layout
	2856
	2565
	50 Megabytes

	
	Total
	4475
	3738
	250 Megabytes

Challenges

Prerequisites

Do a “minor” project in Perl

Before I embarked upon the major project, it was required that I become familiar and proficient with the project’s working environment. To this end, my supervisor, Dr. David Ritchie, "threw me into the deep end" (as he likes to say it) by asking me to make an addition to an existing program among the 50,000 lines of code that already existed.

Although I had had some experience with Perl, nothing could have adequately prepared me for all that code. Indeed, in the coming weeks, I learned just enough to enable me to do the bare essentials. I found the principle of the black box helpful - it is not important to understand the internal workings of the box were, it only matters how the box can help you.

Using this method of "code abstraction" I was able to create a report on the different objects in a half ladder, which can be viewed at http://fncdug.fnal.gov/svx/cgi/svxiiFullLadderReport.pl (Note it usually takes about 10 minutes for the data to be displayed, due to the sheer nature and magnitude of the data).

This provided me with a base upon which I would embark onto the main project. It also proved to my supervisor that if thrown into “the deep end”, I could successfully make my way to the side of the pool without drowning, and could master the main project.

Learn to use Unix

I also had to become very familiar with the Unix OS. Unix was not a huge problem since I had had extensive experience with MS-DOS, and though Unix is ten-fold more complex and intricate, the experience with the command prompt proved invaluable. Most of my work was done on a NCD terminal, a task that proved to be more difficult than I had originally imagined. Using Emacs was a bit more difficult, however after a week or so of mindless wandering, my supervisor rescued me. Thus after the initial week, I became proficient enough to perform simple tasks. Towards the end of the project, I have learned enough so that the initial version of this entire report was done in Emacs.

Learn to Use CVS

CVS (Code Versioning System) is a commercial software program that is used for code development. It allows members of a team of developers to keep updated with the latest versions of a particular project. Each version source code can be “checked-in” and placed in the repository by any of the team’s members (David Ritchie). Other members of the team can then update their local copies of the program code and they would get the updates of members who have checked in different versions. If there is an error in the latest versions of the code, the members can easily revert to a version that was known to work and proceed from there. This eliminates the risk of accidentally overwriting code that works with code that doesn’t. Version control is very important in the code development process.

I used CVS for the “minor” project, because the code I created was to become part of the “svx_server” product to the database. The existing code for this project was already kept in CVS, so I simply followed suit in order to stay consistent with the existing product development procedures.

I did not use CVS for the major project, because the code was mainly stand-alone programs that did not interact with the other “svx_server” code. The code was however checked into CVS at the end of its use in order to archive it.

The Major Project – Research Stage

Having established a strong enough technical base, I entered the research stage. Our first main task was finding a way of downloading the files from the remote web sites. In this stage of the programming cycle, I first attempted to memorize most of the Perl handbook that I was given. I chose to abandon such a policy when it became clear that I wasn't going to be able to do it in ten weeks. It also became clear that it wasn’t going to be necessary. Instead, I researched methods of using existing software to create a viable solution. Below is an outline of the methods attempted as well as the reasons why they were inadequate.

1. Telnet

We first attempted to utilize the Telnet program to access the web site, retrieve a directory listing and finally loop through the listings until all the files were downloaded. Telnet is a program that can send text to other computers from the command line (Genesis Devra Hall, 167). I tried to use it to send the HTTP protocol to retrieve files from a web server in much the way that a conventional web browser does. The basis of this approach was to issue an ”open” command from within Perl to the shell, instructing it to execute the telnet program as well some options which we determined.

The basic form of the command was:

telnet http://www.somewebsite/ 80

GET /index.html HTTP/1.1

Host: www.somewebsite

These commands instruct telnet to open the web site using port 80 (the default port used by web servers). The effect of this was that telnet appeared to be a normal web browser and so the web server responded with the appropriate file (in this case index.html) using the version 1.1 of the HTTP protocol.

Reason It Failed

Part of the difficulty with using this approach was that it was complicated to control telnet from within a script. It appeared that we would have to issue the HTTP protocol command at a very low level, resulting in a complex script. As a result this approach was abandoned after a week of trying.

2. FTP

We also attempted to use FTP in a manner that was similar to using Telnet above. FTP (File Transfer Protocol) is another protocol (along with HTTP – Hyper Text Transfer Protocol) used by browsers to access files from a web server. Its role differs from that of that of HTTP in that it is usually used either for direct upload or download of file. The commands used to control FTP from within Perl were similar to that for Telnet.

Reason It Failed

We were unsuccessful because the server we wanted access to didn't allow anonymous access. This is a mechanism that allows guests to access a file on a web server. We encountered similar problems as we did with Telnet when we attempted to run the program from within Perl.

3. Using ready made modules from CPAN

Next we attempted to utilize a number of modules found at a huge database of Perl related materials, CPAN (Comprehensive Perl Archive Network) . Once we figured out what modules that were needed, we downloaded them and attempted to install them. We thought that once installed, we could use either the “require” or the “use” commands in Perl to incorporate them into our script and utilize them for our intended purpose.

Reason It Failed

The name of the main module that allows access to remote machines through Perl that we found after some tedious searching is called libwww. Upon downloading this module and attempting to install it, we were told that there were a few modules that were missing and were required for the complete installation of the package. These modules were:

1. The Digest::MD5 module,

2. The HTML::HeadParser module

3. The MIME::Base64 2.1 module

4. The Net::FTP 2.4 module

5. The URI 1.03 module

We then located and downloaded these modules, then attempted to again install the libwww module. However, we got more errors because some of the software needed to be installed using the root account.

Also some of the modules were required to be in a specific directory to be used. To solve this, we used symbolic links to give the impression of true directories. In spite of our efforts however, we couldn't get the modules to register and install correctly.

4. Using the built in Chat2.pl module

We then tried to use a built in module that is rather old to Perl, called the Chat2.pl module. This module is located in the Perl Module directory. Its use has been deprecated in newer versions of Perl. It uses a series of low-level calls to open a local port, connect to the remote machine, send a request and then collect the response.

Reason It Failed

The chief reason that this approach failed was the fact that since the module was really old and its use was deprecated, there was very little documentation readily available for it. The compiler complained about a number of function calls to the module and it seemed that its syntax was not compatible with Perl 5. For this reason, this approach was abandoned.

5. Using Lynx

This was the solution that worked well enough to perform the desired tasks. All of the challenges with this approach were due to varying software configurations on computers here at Fermilab.

Early Failures and the Solutions

The computer that we were using didn't have a version of Lynx recent enough to understand the HTTP 1.1 protocol that was needed to access the web sites (Kochan and Wood). To accomplish this we had to use another machine that had a more recent version of Lynx. Then the problem became how to get the files onto a machine that had Matrix via the Perl Script. A number of methods were considered.

Finally, a machine was found that had both an up-to-date version of Lynx and had the Matrix database installed. Then, the problem became one of disk space concerns. An example of this occurred when we attempted to download the Postscript files for the different Hybrids, (about 450 of about 390K each). Thus about 175 Megabytes of disk space was needed. Other components of the database (e.g. the Wafers) proved not to require nearly as much space. Conveniently, the machine that we ended up using was on AFS space and there was a global scratch area that had huge amounts of space for any kind of work. Additionally, the data was deleted once every 24 hrs, which was convenient because we didn't have to do it ourselves.

The fact that the authors of these remote web sites didn’t always follow a fixed protocol in the nomenclature of the files on their sites presented a major problem. Our goal was to create one general download program and one general upload program that would work on all the web sites. However, due to the great disparity in the naming convention of some of the files, distinct download programs had to be created to effectively parse the data on each different site. As a result, we created three very different download programs and three similar upload programs (adequately named to prevent confusion).

Major project – Implementation Stage

Once the research phase was over and a clear understanding of the problem and the solution was present, the implementation stage began. A general program outline was developed to act as a framework upon which to build the entire program.

Sample Database View

[image: image3.jpg]

Program Outline

[image: image4.png]Tieb Sites ovnioad.pl
—_— fins

e

et indexjunk

e

- Matrix Database

upioad ol

Program Flow for download.pl

[image: image5.png]Error

Get URL.
end Source

Farse
Source

G on
e for o e
At s ves
Todate
e ey
Dovniod
il Source freuum) 1 at end of original RL source
Show
Summary
[oeme f———

end

Key Points

· The download subroutine is recursive. It first searches the URL source gotten from Lynx for any sub-directory entries, i.e. looks for “index.html” files or any link ending with a “/”. This is done for all new URL entries.

· Then it searches the source for any of the files matching the pattern specified in the regular expression. If any are found then it stacks the filename.

· Once the entire file is processed, the download routine is called. Then it returns to the previous function call in the recursion.

· Once it is at the end of the original URL it displays a summary and quits.

Program Flow for upload.pl

[image: image6.png]©

Get
File Location

Directary
Valid?
ves

Obtan
& Matrix Names

Error tessage.

Create
Index fle

uid
QL String

Upload File

Key Points

· Once the directory is opened, the appropriate names of the objects are obtained from the Matrix database, based on the object that is going to be checked in (e.g. wafers, hybrids, ladders etc.).

· The files downloaded have in their names the object that they belong to and this is extracted, compared to the names in the Matrix database, and either the matching Matrix object name or an error message is returned.

· Once valid Matrix objects are found, the MQL string is built and executed, causing the files to be either uploaded or causing an error to be generated.

Putting it to work for you

This section is aimed at providing all the information needed to create a program that involves downloading a file from a web server for later use. Uploading these files into a database is not covered since the method used depends on the database software, its implementation and the level of access permitted. For such information, consult the documentation provided with the database. In the following discussion, a familiarity with Perl and the Unix environment is assumed.

Executing a program using Perl

Perl was built for and on a Unix based system. As a result, it inherited most of the features unique to any Unix based program, including the ability to access the Unix shell, execute commands and receive input from the shell’s output. This method is called “piping” the output, and is useful when you want to analyze the output from the shell while not revealing the output to the user.

There are many mechanisms for executing shell commands from within Perl. Most commonly used is the “open” command. Others include:

 The “exec” command – this terminates the currently running Perl script by executing another program in place of itself.

Syntax: echo LIST
Example: exec ‘echo’, ‘Your arguments are: ‘. @ARGV;

This will echo the elements in the array @ARGV in standard output.

 The “system” command – exactly the same as “exec” except that it returns control to the when the execution of the program is done, whereas the “exec” command does not.

 Using ` ` - this interprets whatever is between the backticks (the symbol preceding the number 1 on your keyboard), executes what was interpreted then returns the value into the variable assigned. No translation is done on the return data (i.e. newline characters remain newlines).

Syntax: $variable = `command`
Example: $info = `finger $user`;
This will first evaluate the $user variable, then execute the finger command using the value gotten and finally return the output from the finger command to the $info variable.

The “open” Command

The method used to execute a program in Perl that was used in this program was the “open” command. As the name suggest, the command can be used to open files for reading, writing or appending. However, it is not limited to being able to access files. It can also execute a shell command, provide an external source from which a command can get input, or specify what should be done to the output from a program (Christiansen and Schwartz, 190).

Syntax: open FILEHANDLE, EXPR
FILEHANDLE – a file handle that is associated to the open command. It is used as a reference to the open command.

EXPR – an expression. It can simply be the name of a file, or it can be a command.

There are a few characters that can be present in EXPR that control how it behaves:

 “>>” - if present at the beginning of a file, the file is opened for appending.

 “>” - if present at the beginning of a file, the file is truncated and opened for output.

 “<” - if present at the beginning of a file, the file is opened for input.

 “+” – when placed in front of the > or <, it indicates that the file should be opened with both read and write access.

 “|” – if present at the beginning of EXPR, EXPR is interpreted as a command to which output is to be piped, if present at the end of EXPR, EXPR is interpreted as a command which pipes output back to the Perl program.

Examples: open FLE, ‘ls > file.txt’;
This performs the “ls” command, and sends the output into the file “file.txt”, assigning the FLE file handle to it.

 open CMD, ‘<file.txt |’;

This the file “file.txt” for input and pipes the output from reading this file into the Perl, placing the file handle CMD to the results. Any reference to this open command will be done through the file handle.

The “while” construct

Once we have piped the output from either a file or a program back into Perl (i.e. the “|” symbol comes after the command), we can use the “while” construct to process the input, one line at a time.

Syntax: while (<FILEHANDLE>) { ... }
FILEHANDLE is the name of a file handle that was previously used in an open statement. Input from the file handle is read one line at a time and stored in the $1 variable. Statements that utilize this input is then placed between the { } braces (Christiansen and Schwartz, 120).

Example: while (<CMD>) {

 ($1 ne ‘blank’)? print ‘$1 was the input’ : print ‘\n’;

 }

This piece of code first reads in the input of a predefined CMD file handle and if the input was not the word “blank” then it prints the input else it prints a newline.

Using Lynx to “download” a file from a web server

Lynx, being a text based web browser, is severely limited in its capabilities as a web browser. It cannot display images. If an image has a hyperlink then it displays the image’s “alt text”. However, recent versions understand the HTTP 1.1 protocol and thus Lynx is able to access just about any web site on the Internet. It’s usefulness in this project stems from the fact that it can be told to “dump” the data it gets from the web server onto the screen, rather than attempt to format the data and display the page. By combining Perl and Lynx, the source code of a document on the Internet can be obtained and processed. Note that Lynx does not do any processing on the page when it is told to “dump” the input; it sends the source code from the web page directly on the page.

Syntax: lynx web address -source

where web address is any valid URL

A note on Regular Expressions

Perl is an extraction language, and regular expressions are at the heart of its extraction capabilities. In fact, regular expressions are fundamental to Perl and account for a great deal of the usefulness and applicability of Perl. Regular Expressions are a method of describing data that has a general pattern (Christiansen and Schwartz, 83) . For example, if a file contains a list of links, formatted so that each link is preceded by “”, a regular expression can be made to search the file return the links only, while ignoring the remainder of the file. Regular expressions were used extensively in this project in order to parse (search) the html source code obtained from Lynx and return the name of the files to be downloaded. This was possible because HTML code contains a general pattern for describing the location of links.

Basic Syntax for matching: $variable =~ m/$pattern/;
$variable is the string that you want to use as the input and $pattern is the pattern in the string that Perl should look for.

Example of a pattern: m/Perl/;
This will look through the string and the word “Perl”

Assessment

Summary

Our method of using Lynx and Perl to complete this project was a very practical, well-researched approach. By using tools that are available on just about every flavor and version of the Unix operating system, we were assured that the program would be portable and should execute without much modification on just about any Unix based system.

This project not only shows the power of a language like Perl, but also shows that tools like Lynx and Emacs can have tremendous use in the scientific community, if not in the commercial world. Moreover, in the age of sophisticated GUI’s and enormous programs, this project used simple, lightweight tools to create a solution. This approach may not have been neither the best, nor the quickest or the most efficient. However, it does what it needs to do and it is this fact that makes it an absolute success.

It has been a tremendous learning opportunity and I’m happy that all it turned out the way that it did.

Possible Improvements

During the course of this project, alternative approaches were suggested. Some were tested and found to be inadequate. However, there was an approach that may have led to a better implementation that was not fully researched. This involved using the Perl routine “wget” to download the files. This would save time and resources, as it would remove the need to call an external program.

Another possible improvement, would involve the rewriting the code so that it would be based on the object-oriented approach to software design. The advantages of this would be the ease of code reuse, and the ease of debugging among others.

Additionally, a user interface can be created for the programs. As it stands, all the messages (errors and others) are passed to the prompt. One of the goals was to make the interface web-based, however this was not realized due to time constraints.

Finally, the documentation for the project was not completely completed due to time-constraints. This area needs to be improved so that future programmers can easily understand the program.

Acknowledgements

This project was a success due to the selfless contributions of many individuals, too many to name. However, throughout the duration of this project, there were a few persons who I would like to point out for their contributions.

I would like to thank God, for giving me the strength and the energy to see this complete this project. There were times when it would have been easier to give in and let my supervisor tell me what to do, but I found the inspiration to go on.

Secondly, to Ms. Dianne Engram, Ms. Audrey Arns and the rest of the SIST selection committee for giving me this priceless opportunity and for aiding me in defining my career.

To Dr. Davenport for his guidance in the preparation of this paper, for his inspiration and for his encouragement.

I thank the employees in the Feyman Computing Center for giving me a chance to learn while they work and for introducing me to the religion that is Linux. A special thank you goes out to Simon Epsteyn , who worked in the office next to mine and had to put up with my constant nagging and questions. Also, I must thank Ms. Margaret Votava for being my alternate supervisor.

Finally, I would like to thank the man who I owe the successful completion of this entire project to, Dr. David Ritchie. It has been a pleasure working with a man as brilliant, dedicated and as fun as you (qualities that are very rarely found in one person).

The lessons learned, the knowledge gained and the experiences of this summer will never be forgotten. Thank you all.

References

David Ritchie Individual Web Work Page (http://fncduh.fnal.gov/~ritchie/)

W. Christiansen and Schwartz, Programming Perl, Second Edition, O’Reilly & Associates (1996)

net.Genesis and Devra Hall, Build a Web Site, Prima Publishing (1995)

CPAN (http://www.cpan.org/)

S. G. Kochan and P. H.Wood, Exploring the Unix System, Hayden Book Company (1984)

Matrix from Adra, Adra Systems Inc. (1996)

-9-

