Bandwidth Scaling for Faster Macroparticle Simulation in a Longitudinal Phase-Space Tracking Calculation
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Abstract


Macroparticle tracking allows approximation of the evolution of a beam current distribution in longitudinal phase-space.  Generally the number of macroparticles required to obtain reasonably accurate results is large, especially when the interaction of the particles through short range wake fields or through the inter-particle force is considered.  Such a large number of particles consumes a large amount of computing time.  It is shown that a simple scaling by a factor  can reduce the amount of time required for a simulation by the order of -4 for most applications.  This factor is composed of -1 reduction in the number of tracking steps per unit simulated time and -3 from a rebinning of the charge distribution with -1 fewer bins.  The Vlasov equation is unchanged by this scaling.  The limitations to the amount of rescaling are discussed.  
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The individual particles in a low intensity beam behave like single particles.  Their motion is governed by an external guiding field created by magnets and an RF system.  However, many accelerator applications make use of medium or high intensity beams.  In the case of a high intensity beam, the large number of moving charges are responsible for the generation of an extra “self electromagnetic field”, also called “wake field”.  This field acts back on the beam.  A particle in the beam also responds to the fields created by its neighboring particles (called space-charge fields).  As the beam intensity increases, the wake field becomes comparable to the external guiding field and can strongly influence the collective particle motion.  Under certain conditions the perturbation of the particle motion further enhances the wake field.  This can lead to a frequency shift (a change of the synchrotron frequency), to an increase of a small disturbance of the beam or to a change of the distribution of particles (bunch lengthening) among other effects.  These phenomena are caused by the collective contribution of all the particles; therefore, they are referred to as “collective instabilities” [1].   Collective instabilities eventually lead to a beam loss, thus they are one of the factors determining the performance of a particle accelerator.  This is one of the reasons to follow the time evolution of a distribution of particles.  Macroparticle tracking is one of the approaches used to following the evolution of a longitudinal phase space distribution.  

The computer simulation program ESME is used for macroparticle simulations in the energy-phase plane.  It uses the single-particle equations of motion, together with the collective potential, to track the individual particles turn by turn.  The number of macroparticles used in a simulation depends on the character of the collective potential and is chosen to provide an adequate current distribution.  Generally the number of macroparticles required to obtain reasonably accurate results is large, especially when the interaction of the particles through short range wake fields or through the inter-particle force is considered.  Such a large number of particles consumes a large amount of computer time.  However, it is possible to reduce the number of macroparticles used in a simulation and the number of tracking steps per unit simulated time by using a simple scaling.  It is shown that scaling by a factor can reduce the amount of time required for a simulation by the order of 4 for most applications.  This factor is composed of 1 reduction in the number of tracking steps per unit simulated time and 3 from a rebinning of the charge distribution with 1 fewer bins.  A comparison of a scaled and an unscaled tracking shows the effectiveness of the approach.
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A bunch circulating in an accelerator is composed of a large number of particles (usually 109 to 1013 particles).  It is impractical to use that number of particles in a computer simulation program.  Therefore, a representative “macroparticle” is introduced.  The actual number of particles, Nt, is replaced by a much smaller number of macroparticles, each representing Nt/N0 actual particles at a certain location in phase-space.  Particles in a synchrotron are accelerated each time they pass through a cavity where an rf guide field has been excited.  The particles cross the cavity when the phase of the rf field is such that it imparts a specific energy to the particles.  The revolution frequency of the particles increases as they are accelerated, thus the rf frequency of the guide field has to be modified to synchronize the motion of the particles.  This requires the frequency of the rf field to be an integral multiple, h, of the revolution frequency  s of a synchronous particle.  This synchronous particle is a reference particle that has exactly the specific energy to arrive at the rf gap synchronized with the rf period turn after turn.  All the particles oscillate relative to the synchronous particle.  

In a multiparticle  tracking calculation , the iteration  of a  pair of first order difference equations gives the positions of the macroparticles in an  energy-phase plane.  The iteration step can be fractional or multiple turns but it is almost always taken as one period of circulation of the particles around the ring.  The interaction of the particles is calculated each iteration by an energy gain for each particle arising from the wake fields.  The single turn map can be approximated by [2]
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where ( is the difference between the phase of a particle and the phase of the synchronous particle s.  Similarly,  represents the difference between the energy of a particle and the energy of the synchronous particle Es.  The subscripts k and m label particles and turns respectively.  All symbols are defined in Table I.

The rf voltage creates a region in longitudinal phase space where the particles perform stable synchrotron oscillation.  The area enclosed by a contour separating this stable region from the unstable one is called the bucket area.  The same phase-space distribution of macroparticles is desired at corresponding times when the evolution of the distribution is considered in its natural variables and in scaled variables.  Thus, the area of the stationary bucket 
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      (3)

must be the same in both cases and eV/hmust be scale-independent.  The phase slip factor  is defined as the relative change of phase given by a unit change of the relative momentum.  Scaling the slip factor and the potential up by the same factor allows the particles to move over a large phase space range in any given real time interval.  The phase-space motion is accelerated.  Notice that the potential is not just the rf potential but also the collective potential produced by the total beam current.  A study of the evolution  of a particle distribution mapped according to equations 1 and 2 as well as mapped with  and V scaled by a factor  reveals that the distribution (plots of the macroparticles positions on the energy-phase plane) is identical in both cases when the plot for the unscaled case at time t is compared with the plot for the scaled case at time t/.  Thus, there is a gain of a factor -1 in the computing time by speeding up the scaled calculation.


When a broadband impedance or the direct interparticle forces (space charge or “perfectly conducting wall” forces) are included, the effects of the beam pipe impedance must be covered over some frequency bandwidth.  In order to do that, the charge distribution must be divided into bins sufficiently narrow to show the details in the distribution to that scale.  The contribution from each bin to the induced fields is evaluated.  In frequency domain the bandwidth is spanned by fourier components of the beam current.  If the circulation frequency is f0 and the bandwidth is W, the particle distribution must be divided into 2W/f0 bins for the fourier transform.  But the scaling down of the time means that the frequencies associated with the motion, including the rf frequency, are also scaled up.  f0 is  times higher, thus the number of bins is reduced by a factor -1.  It has been shown by statistical uncertainty analysis that when a three point difference formula for the derivative of the linear charge density is used in calculating the space charge force in time domain, a reduction by a factor -1 in the number of bins translates in a reduction in the number of macroparticles by a factor -3 [3].  This is in order to retain the same statistical accuracy in the calculations.  Thus the net effect of scaling by a factor is an increase in the speed of the simulations on the order of -4 for most applications.
TABLE 1. Definition of frequently used symbols




Symbol
Meaning


RF phase

s
Synchronous phase

(i
Difference between particle phase and s

k
Index for particles

m
Index for turns

h
Harmonic number

e
Elementary particle charge (( 0)

f
Frequency

Es
Synchronous energy


Relativistic velocity (v / c)


Relativistic energy (Es / moc2)

t
of transition energy in synchrotron


Phase slip factor (
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V
Total potential

Vrf
Peak rf voltage

Vcoll
Collective potential


Dimensionless real scaling constant

Z
Longitudinal Impedance

f0
Beam Circulation Frequency


Angular frequency of beam circulation

s
Angular frequency of small amplitude synchrotron oscillations

Qs
Synchrotron tune

j
Difference between energy of the j-th particle and Es

j
Time difference 
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p
Index for fourier harmonics
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Amplitude of time excursion in synchrotron oscillation
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Synchrotron oscillation phase of a particle

N
Number of particles in beam
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Particle density in phase space
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Consider a bunch that executes small amplitude synchrotron oscillation with frequency s = 0Qs.  The current represented by this bunch in time domain is 
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where (t) is the Dirac delta function; mT0 + m is the passage time of a particle at a cavity in successive turns m with 
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[image: image30.wmf]The last term in the cosine is the synchronous oscillation phase of the kth particle on turn 0 and    is the amplitude of the modulation.  The summation taken over an infinite number of revolutions implies that the time during which the beam circulates inside the ring is much larger than the revolution period.  Using the Fourier transform 
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the steady state collective voltage experienced by a particle with phase  can be written in time domain as
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Or, using = h0t
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where the sum over k is taken over all particles
.  Notice that the frequency spectrum of the voltage consists of integral multiples of the revolution frequency and their sidebands  = p0 ± s.  The difference in the energy gain accumulated during one turn by the particle relative to the synchronous particle of phase s is
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while the change in time advance of the particle is
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The single particle equations of motion in canonical energy-time variables can be written by approximating the time derivatives as the differences per revolution in eqs. 9 and 10 divided by the revolution period T0. 
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The rf potential is sinusoidal with amplitude Vrf.  The energy increment eVrfsins keeps a particle with phase s synchronous as the guide field is changed or energy is lost to the real part of the longitudinal impedance.  The total hamiltonian for the motion of all of the particles is
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The time evolution of the phase space distribution for the multiparticle system is described by the Vlasov equation
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    (14)

where ((, ; t) is the particle distribution function which depends on t only implicitly through  and .  It expresses Liouville’s theorem on conservation of phase space density and is valid in the absence of diffusion or external damping of the motion.

The scaling introduced into the map in Sec. II creates an apparently new physical system which will be denoted as the primed system; it is related to the original system by

(=

V(=V

t(=t / 
However, if the two systems are physically equivalent, then ((|t( = (|t.  By direct substitution one finds

      H( = H




    (15)

The Vlasov equation in the primed system is
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which leads immediately to
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    (17)

Because the scaling constant  ( 0 appears to the same power in every term of the 

equation, the solution is independent of the scaling.
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Figures 1 to 4 show a comparison of the time evolution of a distribution of particles with and without  and V scaled by a factor .  The collective potential in that case is generated by an h = 3 higher order mode resonance (HOM) and 2x1013 particles in a storage ring.  Figures 1 and 2 reveal that the distribution, i.e. the plots of the macroparticles positions on the energy-phase plane, is identical in both cases when the plot for the unscaled case at time t is compared with the plot for the scaled case at time t / .  Figures 3 and 4 compare the collective potential vs. rf phase for the same conditions as before.  The dash-dot curve in the plots represents the longitudinal charge distribution.  In figure 4 the voltage is scaled by a factor = 2, therefore there is a factor of 2 scale difference on the potential axis between the scale and unscaled case.  The charge distribution looks smoother in the scaled case because the number of bins has been decreased by the factor  = 1 / 2.  To have an idea of the efficiency and usefulness of this scaling, an unscaled simulation as the ones in the figure can take tens of hours of processor time on a Sun Ultra 2 station.  The same simulation with the scaling = 2 will take only a few hours on the same machine. (about -4 times faster!).

[image: image45..pict]Unscaled Tracking

Figure 1. Phase-space distribution of particles for the case of an h = 3 HOM resonance in a storage ring after 1x104 iterations (3.579x10-3 sec)

Scaled Tracking

[image: image46..pict]
Figure 2. Phase-space distribution of particles for the case of an h = 3 HOM resonance in a storage ring after 5x103 iterations (1.790x10-3 sec). The scaling factor is  = 2.

Unscaled Tracking

[image: image47..pict]
Figure 3. Histogram of voltage vs. rf phase produced by an h = 3 HOM resonance in a storage ring after 1x104 iterations (3.579x10-3 sec).  The dash-dot curve represents the longitudinal charge distribution.

Scaled Tracking
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Figure 4. Histogram of voltage vs. rf phase produced by an h = 3 HOM resonance in a storage ring after 5x103 iterations (1.790x10-3 sec).  The scaling factor is  = 2. The dash-dot curve represents the longitudinal charge distribution.
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There is a limitation on the choice of the scaling factor .  In the scaled system the number of bins is reduced by -1.  Thus, the number of harmonics is also reduced but the frequency range remains the same.  If the spacing of the harmonics of the circulation angular frequency is too large, important features of the frequency dependence of the longitudinal impedance will be missed.  Another two conditions to be satisfied are that the rf phase slip per iteration should be small with respect to the bunch length, and the energy imcrement per iteration should be small with respect to the beam energy spread.
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The large amount of moving charges in a high intensity particle beam generates a wake field that perturbs the collective particle motion leading to collective instabilities and beam loss.  Therefore, it is desired to follow the details of the time evolution of a particle beam in an accelerator.  Macroparticle tracking is an approach used to study the evolution of a longitudinal phase space distribution of particles.  A large number of particles, and thus a large amount of computing time, is required to obtain accurate results.  However, a scaling of the phase slip factor and the voltage (both the rf voltage and the collective potential) by the same factor reduces the number of macroparticles used in a simulation by a factor -3 and the number of tracking steps per unit simulated time by a factor -1.  Hence the speed of the simulations is increased by -4 for most applications.  The Vlasov equation is independent of the scaling.  The phase space distributions of particles is the same in the unscaled and scaled cases with a gain of -1 in the computing time.
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Appendix
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Collective Potential for a Circulating Bunch in a Cavity


The current represented by a bunch executing small amplitude synchrotron oscillation with frequency s = 0Qs is given by equation (4).  Its Fourier transform is
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Since
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Assuming small oscillations (w
[image: image9.wmf] << 1) for all frequencies contained in the bunch spectrum:
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Expanding the exponential function
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The Fourier spectrum consists of rotation harmonics plus synchrotron side bands at ( mQs whose strength depends on the synchrotron oscillation amplitude.


The Fourier transform of the voltage is
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where Z() is the impedance of a cavity resonator.  In time domain, using the inverse Fourier transform
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Using the relations
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we get
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Substituting this into equation (19)
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With phase  = hot as the independent variable
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� For a more detailed derivation of the steady state collective voltage see the appendix.
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