Integration and Testing of the Level 1 Tracking 

Trigger (XFT) at 

the Collider Detector at Fermilab

[image: image1.png]24
XFT Linker
3 crates

XFT Finder|

CDF First Floor Counting Room

Ansley Cable (~60 m)

168 TDC
XTC mezzanine card

20 crates
CDF Collision Hall




José Leo Bañuelos

[image: image11.wmf]48 Finder Transition modules

à

New Mexico State University

Las Cruces, New Mexico

Project Supervisor:

Dr. Jay Dittmann

Alternate Supervisor:

Dr. Phillip Koehn

Fermi National Accelerator Laboratory

CDF 

Abstract



The eXtremely Fast Tracker (XFT) Trigger at CDF is essential to the success of recording a maximum amount of high energy particle physics events in Run II.  This report deals with the author’s work in the summer of 2000 in integrating components of the XFT Trigger and testing it to ensure proper hardware operation.  The details and reasons regarding programming code developed by the author to enable specific testing within the XFT Finder modules will be described.

Introduction

In preparation for Run II of the proton/antiproton particle accelerator at Fermilab, many essential upgrades are being made to its two collider detectors, the D-Zero detector and the Collider Detector at Fermilab (CDF).  For Run II, the main injector will have an  increased luminosity of 2*1032cm-2s-1, compared to 2*1031cm-2s-1 in Run I.  The proton/antiproton bunch spacing will be shortened to 132ns, compared to 3.5(s in Run I. With the upgrades, both detectors will be able to handle the shorter bunch spacing and have an extended potential to record  many more physics events with higher accuracy and  resolution.  All this will enable physicists to make precision measurements and search for new phenomena in the realms of exotic physics, top physics, electro-weak physics, bottom quark physics, and QCD physics.

In CDF, the Central and Endwall calorimeters, Muon Extension System, Central Muon System, and Solenoid magnet are all being retained from Run I.  Parts of the detector that are new or upgraded for Run II include a Tracking System, Endplug Calorimeter, Front-end electronics, DAQ system, a Trigger System, and the Intermediate Muon (IMU) System. 

The focus of the author’s project and other work lies within the Level 1 XFT (eXtremely Fast Tracker) trigger.  The purpose of the XFT is to quickly find and identify tracks in the Central Outer Tracker (COT).  In order to test the XFT trigger system, bits of simulated data are sent through the system and captured at different locations within the system modules. My work deals with capturing data in programmable chips within the Finder modules of the XFT.  This type of testing looks for hardware problems.  Most of the computer code for all this has been written already, however, I learned the Java programming language, which is what most of the code is written in, to be able to write methods within the monstrous code for Finder module capture tests in the Altera Flex 10K Field Programmable Gate Arrays (FPGAs) Finder chips.  This new Java code allows the Finder Input Alignment chips to be read. My code also performs a series of data bit format conversions to simulate the expected data for the Finder chip capture tests.  A comparison between this simulated data and the data obtained from the Finder chips will determine if errors occur through certain data paths within the system.  To obtain an understanding of this work, however, some description of the XFT system is necessary.
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Theory and Description:

The overall picture of the XFT Tracking Trigger
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Figure 1- Diagram of the XFT Tracking Trigger
The XFT Hardware Design


When Run II begins the XFT’s source of information will be from the COT (Central Outer Tracker).  Thus, it makes sense to briefly describe how data is obtained from this detector and what the layout of the COT’s detecting components are.    

The COT
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Figure 2- The COT(Central Outer Tracker)



A cell within the COT consists of 12 gold-plated tungsten sense wires that stretch across the COT, parallel to the beam and strung between the COT’s endplates.  When a charged particle passes through the COT chamber, it ionizes the fast drift gas and the freed electrons drift toward nearby sense wires, generating a “hit”  on those wires.

168 COT  TDC(Time to Digital Converter) modules- These modules collect sense wire signals from the COT chamber and  convert the data from analog to digital. Before sending data through COT transition modules, this digitized data is sent to the XTC Mezzanine cards, which are mounted on the TDC modules.

 168 XTC (XFT  Transition Card)  Mezzanine Cards-  These cards have the job of classifying  hits as near/far (prompt/delayed) from the detector wire.  The prompt and delayed times given in the diagram below correspond to the ideal setting of 132ns Tevatron bunch spacing.  If spacing is further apart, then the times will in turn have a broader range. 
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COT TDC Transition Modules – These modules drive data bits onto flat Ansley cables that carry data bits to the Finder crates in the first floor counting room.  Each Ansley cable will carry data for up to 48 TDC channels.  In order to get all the information from one event up the cable before the next event begins, 1 data cycle every 22ns occurs within the 132ns clock.  

Finder Transition Modules- These modules receive data from the Ansley cables and drive it to a Finder module.  In the case of “neighbor information”, data is sent across a slot by the Finder Custom J3 Backplane.

Finder Modules- These modules find track segments spanning a 15o slice of two Superlayers.  There are FINDER 1/3 modules, which span Superlayers 1 and 3, and FINDER 2/4 modules, which span Superlayers 2 and 4.  Once segments are found, they are reported to the Linker modules.
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Linker Modules-  These modules look for tracks crossing all four (or ¾) of  the Superlayers.  By this time, the COT information is logically divided into 288 segments, each 1.25o .  Only one track is allowed per segment.
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Every 132ns data from all 288 segments is sent from the XFT to the XTRP (Extrapolation System) where the tracks and their slope and pixel information are distributed to the  Level 1 Muon System(L1 MUON), Level 1 Calorimeter Trigger, and Level 1 Track Trigger (L1TRACK).

The XFT trigger is designed with the goal of having >90% livetime.  The term livetime is used to describe the actual time when the system is recording data from a particular event.  Deadtime is just the opposite, this is time when no data from events is being recorded.  In Run I, deadtime was incurred because the Level 1 accept caused ~ 40 (sec of deadtime, and the Level 2 accept  caused ~2.5 msec of deadtime.  Valid track data was lost because the busy system was not able to record events.  In Run II, the XFT’s design including the use of data parallel processing and pipelining and more buffers will not cause deadtime, unless all buffers in a certain level are full.


Experimental Details:  Finder Module Data Capture Diagnostic Tests    
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The data flow through the Finder module begins with the  Input Alignment section followed by the Finder section and finally onto the Finder to Linker interface section.  The following is a photograph of a Finder SL(SuperLayer) 1/3 module along with a block diagram of it. 
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Figure 3- (previous page) Finder SL1/3 Photograph, (top) Finder SL1/3 Block Diagram

As Finder modules receive data from 360+ different Ansley cables, this data should be coming in lock-step across the system, however, shifts in data timing may still occur.  The shifts may result because of the position of a TDC module within a crate, TDC crate to crate differences, and possible shifts on the Ansley cables due to length or transmission qualities.  In the Input Alignment section this problem is taken care of.  Within the input stage, Cypress CY74FCT162823T 18-bit data registers capable of 100Mhz synchronous operation, and RoboClock(Cypress CY7B991-7JC) phase lock loop (PLL) devices will regenerate the 22ns clock signal.  The output of the 18-bit register along with the regenerated 22ns clock signal is forwarded to the Alignment FPGAs.

The Alignment chips are implemented in programmable Xilinx XC 4005E FPGAs.  Each FPGA is responsible for aligning the registered data from its Ansley cable with the CDF_Clock signal supplied on the Backplane and then sending it on to the Finder stage in the proper format. 



These programmable devices also allow many diagnostic methods for testing the Finder modules as a single unit or within the XFT system.  Different diagnostic chip designs have been made for these tests.  Selection of these chip designs is made possible through the Finderboard Status Page within the General Data Acquisition GUI (Graphical User Interface).


Figure 4- Screen capture of the 

Finderboard Status Page within the 

General Data Acquisition GUI.  In this 

figure, a flashram is being download for 

finder chip capture tests.  The enable 

downloading checkbox is chosen along

 with the appropriate super layer finder 

chip, in this case Finder SL1.  The File

 Chooser button brings up a window to 

choose the appropriate diagnostic chip

design.   

The different diagnostic chip designs allow data to be captured in and driven through Input Alignment chips, Finder chips, and Pixel chips.  Up to this point the extent of the diagnostic tests was limited to capturing data in the Input chips.

  This was used to verify the connections between the COT TDC Mezzanine modules, Mezzanine Transition module, Ansley cable, Finder transition module, Finder crate custom Backplane and the Finder Modules Input section.

Simulated random data was sent through the system, beginning at the COT TDC modules and captured in the Finder module Input Alignment chips.  The captured data at this point is compared to generated expected data in the 6 cycle, 22ns table 1 format described below.         

The Ansley cables contain 25 pairs of wires, of these, 19 pairs carry data from the COT TDC Transition modules to the Finder Transition modules.  The remaining 6 pairs carry ground.  There are 6 data cycles occurring within the 132ns CDF clock period, implying that data will be entering the finder module every 22ns, at a rate of 45.5Mhz.  The following table shows the assignment of cable pairs and ordering of the 6 data cycles:

	Pairs 1, 2
	Pair 3
	Pair 4     
	Pair 5
	Pair 6
	 Pairs 7
	   Pairs 8-23
	   Pairs 24, 25

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic high
	Channels 0-15 Prompt
	GND

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic low
	Channels 16-31 Prompt
	GND

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic low
	Channels 32-47 Prompt
	GND

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic low
	Channels 0-15 Delay
	GND

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic low
	Channels 16-31 Delay
	GND

	GND
	STROBE
	GND
	Beam_zero
	GND
	logic low
	Channels 32-47 Delay
	GND


Table 1- Ansley cable- Data Multiplexing

The following figure gives a visual representation of the mapping of the data from 48 TDC channels.  Wires outside the box represent Neighbor information used by a Finder and received from Ansley cables of increasing or decreasing adjacent phi.
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figure 5- 
 It is the function of the COT TDC mezzanine card to actually deliver  the 16-bits of prompt/delay data  along with a Beam_zero marker along with an “edge transition” strobe every 22ns.  COT TDC Transition module will make use of Low Voltage Differential Signaling (LVDS) technology to drive the data.

Making Finder Chip Capture Mode Diagnostic Tests Possible
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In order to run finder chip capture tests I had to integrate a few methods within a java code, AnsleyCablePump.java, that would create a simulation of the data that exits the Finder chips and then compare this generated data to what is actually read from the Finder chips.  One hurdle here was creating a method that would input words of 16-bit core data entering every 22ns and output words of 24-bits core data aligned with the 33ns clock signal, plus having these data bits reordered to the Finder chip data format.

The goal is to have data that my method outputs correspond with the data that is captured in the Finder chip.  The format of this information will now be in 4 data cycles within the 132ns clock.  The 24-bits of prompt/delayed channel information will be accompanied by an Error_flag, Word_zero marker, and Beam_zero marker bits in word bits 24-26. 

Table 2 shows the Finder FPGA view of wire numbering.

	Time slice 0:
	Error_flag
	Word_zero_Marker
	Beam_zero_Marker
	 Channel 0-23 Prompt

	Time slice 1:
	Error_flag
	Word_zero_Marker
	Beam_zero_Marker
	Channel 24-47 Prompt

	Time slice 2:
	Error_flag
	Word_zero_Marker
	Beam_zero_Marker
	Channel 0-23  Delay

	Time slice 3:
	Error_flag
	Word_zero_Marker
	Beam_zero_Marker
	Channel 24-47 Delay


Table 2- Shows Finder FPGA view of wire numbering

The following diagram is a representation of how the Finder Chips view the data.  The piece of code I wrote must convert the data as it appears in table 1 and figure 5 to the Finder chip bit format.  This format conversion is done in order to make track segment finding easier for the Finder chip. 
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Figure 6-



A screen capture of the core algorithm I wrote appears in the appendix.



In performing these diagnostic tests we use a Java graphical user interface that is configured according to the type of test we want to run.  A screen capture of the GUI appears below.


Figure 7- View of the AnsleyCableTestFrame.java GUI.

I will explain the function of the essential columns within the GUI, beginning at the far left side.  The first row of numbers contains unique Ansley cable identifications, next are the Ids for the COT crate that each cable is connected to; the crate slot number and cable connector letter from the TDC Transition board follows.  Next are the Finder crate Ids along with their crate slot number and cable connector.   The “add” buttons allow the user to add a totally new crate if desired.  There were only a limited amount of crates we could use in our experiments because of an ongoing problem with having TDC crates fully stocked with TDC modules.  There was a constant lack of TDC modules because manufacturing defects would cause unpredictable failures and result in having them removed and taken  to be fixed.  This actually has presented problems in the types of tests we run because without having all TDCs place, all Finder modules cannot be tested.


When Finder chip capture tests are performed a “Quick Test” is done first.  This involves sending 256 words of information to the selected TDC modules and capturing the data in the Finder module finder chips.  The data is then compared to what the program predicts, in the Finder chip case, what my piece of code predicts.  If the “Quick Test” passes without errors, then a “Full Test” is run.  This is exactly like the Quick Test but it is run through a chosen number of loops.  This is done to test for reliability.  In some instances, factors like noise from other wires, bad grounding of some components or bad connections within any of the delicate parts of these modules, have shown to give accurate readings only in some instances. Below is a screen capture of what a terminal screen looks like when errors show up in our tests.




                                            This column lists the expected                  This column gives the actual 

                                  data that is generated by computer methods               output of  a given chip, in my           

                                  such as the one I wrote.                                                case the Finder chip.         

Figure 8- Unix terminal screen capture displaying error messages from Finder chip capture tests. 

Conclusion:


It is evident that the extremely Fast Tracker (XFT) is essential to the success of recording a maximum amount of Run II exciting physics events.  The ability of the XFT to quickly find and identify tracks in the COT is of great importance since proton/antiproton bunch spacing will eventually be set to 132ns.  Throughout this entire internship, the installation and testing of the XFT progressed without major problems within  the XFT.  The computer code I wrote will allow for a more extended diagnostic testing of the Finder module components.  The data is now captured in Finder module Finder chips. Some more work needs to be done as far as code additions to properly test and operate all Finder chips within the XFT Finder modules.  My “convertBit” code needs to be modified in order to get proper alignment of the control bit signals in bits 24-26.  Also more similar code needs to be written in order to fully test Neighbor data through the Finder chips.  As TDC module availability progress more testing will need to be done to ensure all Finder module Finder chips operate correctly in the XFT’s 48 Finder modules. 
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Appendix: 
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return (tracer_present || testclk_present);

//Method to Convert bits from 16-bit outputs to 2d-bit outputs.
//2s you can see this is a VERY rough sketch and certain names
//are only used for simplicity, they will change.

public static int[] convertBit(int[]input){
int [Joutput-nev int[4];
s

//This is for the prompt bits...
for (3=0 ; 3<4 ; 3++){
for (k=0'; ked ; k) {
output [0] |=(( (input[0]>>d*3+k) &0x1)<<6*k+3);
)
for (3=0 ; j<2 ; 3++){
for (k=0'; k<d ; k4 {
cutput [0] 1=(( (input [11>>423+k) &Dxl)<<6rk+d+3);
¥

for (3=0 ; 3<2 ; 3+4){
for (k=0'; ked ; k+4) {

output [1] = (({input[1]>>4*3+8+k) &Dx1)<<6xk +3);
i
for (3=0 ; 3<4 ; 3+4){

for (k=0'; ked ; k+4) {

output [1] 1= (((input[2]>>a%3+k)&0x1)<<6*k+2+);
¥

/{This is for the delayed bits
for (3=0 ; 3<d ; 3+4){
for (k=0 ; ked ; k) {
output [2] |=(( (input[3]>>a%3+k) &0x1)<<6*k+3);
3
for (3=0 ; j<2 ; 3++){
for (k=0; k<d’ ; kr+) {
cutput [2] 1=(( (input [4]1>>4*3+k) &Dx1)<<6xk+d+3);
Fa

for (3=0 ; 3<2 ; 3+4){
for (k=0 ; ked ; k+4) {

cutput [3] 1= (({input[4]>>4*3+8+k) &0x1)<<6xk +3);
i
for (3=0 ; 3<d ; 3+4){

for (k=0 ; kel ; k) {

output [3] 1= (((input[5]>>d%3+k)&Dxl)<<6*k+2+);
¥

return(output) ;

1

@





This screen capture displays the core part of my Java algorithm that was integrated into the AnsleyCablePump.java  code.





48 Finder Transition modules(
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Axial Superlayers











( 168 TDC Transition Modules





































































































The mezzanine card is responsible


for classifying each hit on a wire


as either


 Prompt : 	Drift time from 0-44 nsec


 Delayed:	Drift time from 45-132 nsec





“Prompt” hit





“Delayed” hit
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